Determination of optical properties in nanostructured TiO2 thin film fabricated by electron beam physical vapor deposition
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Akbar Eshaghi, Abbas Ail Aghaei Determination of optical properties in nanostructured TiO2 thin film fabricated by electron beam physical vapor deposition [на англ. яз.] // Оптический журнал. 2016. Т. 83. № 1. С. 36–39.
Akbar Eshaghi, Abbas Ail Aghaei Determination of optical properties in nanostructured TiO2 thin film fabricated by electron beam physical vapor deposition [in English] // Opticheskii Zhurnal. 2016. V. 83. № 1. P. 36–39.
Akbar Eshaghi and Abbas Ail Aghaei, "Determination of optical properties in nanostructured TiO2 thin film fabricated by electron beam physical vapor deposition," Journal of Optical Technology. 83(1), 26-29 (2016). https://doi.org/10.1364/JOT.83.000026
In this research, nanostructured TiO2 thin film was deposited on a glass substrate by the electron beam physical vapor deposition method. X-ray diffraction, field emission scanning electron microscopy, and a UV-VIS-NIR spectrophotometer were used to characterize the structure, morphology, and transmittance spectrum of the TiO2 thin film. X-ray diffraction showed that the TiO2 thin film included both anatase and rutile phases and the field emission scanning electron microscopy indicated the average crystal size was 35 nm. Optical parameters of the TiO2 thin film such as refractive index, extinction coefficient, thickness, and band gap were measured by the Swanepoel method based on the transmittance spectrum.
nanostructure, TiO2, thin film, optical properties
OCIS codes: 160.4670, 160.4760, 240.0310
References:1. Righettoni M., Amann A., Pratsinis S.E. Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors // Materials Today. 2015. V. 18. P. 163–171.
2. Kiriakidis G., Binas V. Metal oxide semiconductors as visible light photocatalysts // J. Korean Phys. Soc. 2014. V. 65. P. 297–302.
3. Vyas S., Tiwary R., Shubham K., Chakrabarti P. Study the target effect on the structural, surface and optical properties of TiO2 thin film fabricated by RF sputtering method // Superlattices and Microstructures. 2015. V. 80. P. 215–221.
4. Pjevic D., Obradovic M., Marinkovic T., Grce A., Milosavljevic M., Grieseler R., Kups T., Wilke M., Schaaf P. Properties of sputtered TiO2 thin films as a function of deposition and annealing parameters // J. Phys. B: Condensed Mater. 2015. V. 463. P. 20–25.
5. Eshaghi A., Pakshir M., Mozaffarinia R. Preparation and photo-induced superhydrophilicity of composite TiO2–SiO2–In2O3 thin film // Applied Surface Science. 2010. V. 256. P. 7062–7066.
6. Gonzalez J.S., Parralejo A.D., Ortiz A.L., Guiberteau F. Determination of optical properties in nanostructured thin films using the Swanepoel method // Applied Surface Science. 2006. V. 252. P. 6013–6017.
7. Swanepoel R.J. Determination of the thickness and optical constants of amorphous silicon // J. Phys. E: Scientific Instruments. 1983. V. 16. P. 1214–1218.
8. Manifaciar J.C., Gasiot J., Fillard J.P. A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film // J. Phys. E: Scientific Instruments. 1976. V. 9. P. 1002–1005.
9. Ilican S., Cag Llar M., Caglar Y. Determination of the thickness and optical constants of transparent indiumdoped ZnO thin films by the envelope method // Materials Science – Poland. 2007. V. 25. P. 709–717.
10. Carp O., Huisman C.L., Reller A. Photoinduced reactivity of titanium dioxide // Progress in Solid State Chemistry. 2004. V. 32. P. 33–177.