УДК: 535.318
Selection of optical materials to minimize longitudinal chromatic aberration in a prospective broad-coverage medium-resolution multispectral instrument
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Заварзин В.И., Кравченко С.О., Митрофанова Ю.С. Выбор оптических материалов для минимизации хроматизма положения в перспективной широкозахватной многоспектральной аппаратуре среднего разрешения // Оптический журнал. 2016. Т. 83. № 10. С. 16–23.
Zavarzin V.I., Kravchenko S.O., Mitrofanova Yu.S. Selection of optical materials to minimize longitudinal chromatic aberration in a prospective broad-coverage medium-resolution multispectral instrument [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 10. P. 16–23.
V. I. Zavarzin, S. O. Kravchenko, and Yu. S. Mitrofanova, "Selection of optical materials to minimize longitudinal chromatic aberration in a prospective broad-coverage medium-resolution multispectral instrument," Journal of Optical Technology. 83(10), 593-598 (2016). https://doi.org/10.1364/JOT.83.000593
We discuss a method for selection of the optical materials to be used in the corrective lens for a Cooke three-mirror system. We determined the optimum glass combinations for the 0.45–1.7 μm, 0.45–0.96 μm, and 1.55–1.7 μm spectral regions.
remote Earth probing, mirror lens, secondary spectrum, superapochromat, two-channel objective
OCIS codes: 350.6090, 080.2468, 160.4670, 080.2740, 080.4035, 110.4234
References:1. V. I. Zavarzin, S. O. Kravchenko, and S. A. Morozov, “Methodology for calculation of Mangin-mirror objectives based on a three-mirror system with eccentric image field,” Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Seriya Priborostroenie (1), 1–13 (2013).
2. S. A. Arkhipov, B. N. Senik, and V. I. Zavarzin, “Developing and fabricating optical systems for a prospective remote-earth-probe spacecraft,” J. Opt. Technol. 80(1), 25–27 (2013) [Opt. Zh. 80(1), 34–38 (2013)].
3. M. Y. Zhilenev, “Overview of the use of multispectral remote-earth-sensing data and combinations of data for digital processing,” Geomatika (3), 56–64 (2009).
4. S. A. Arkhipov, V. I. Zavarzin, V. V. Zavarzina, S. O. Kravchenko, S. A. Morozov, and B. N. Senik, “Catadioptric objective (options),” Russian Federation patent no. 2461030 (2012).
5. N. P. Zakaznov, S. I. Kiryushin, and V. N. Kuzichev, Theory of Optical Systems: A Textbook for University Students Studying Instrumentation (Mashinostroenie, Moscow, 1992).
6. A. S. Dubovik, M. L. Apenko, G. V. Dureı˘ko, A. M. Zhilkin, L. A. Zapryagaeva, D. A. Romanov, and I. S. Sveshnikova, Applied Optics: A University Textbook (Mashinostroenie, Moscow, 1992).
7. S. A. Arkhipov, V. L. Zavarzin, S. A. Morozov, A. V. Li, V. M. Lin’ko, and S. O. Kravchenko, “Catadoptric objective,” Russian Federation patent no. 2547170 (2015).