УДК: 535.3
Self-focusing threshold of a beam of laser radiation in rubidium vapor
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Саутенков В.А., Шнейдер М.Н., Саакян С.А., Вильшанская Е.В., Мурашкин Д.А., Зеленер Б.Б., Зеленер Б.В. Порог самофокусировки пучка лазерного излучения в парах рубидия // Оптический журнал. 2016. Т. 83. № 11. С. 27–30.
Sautenkov V.A., Shneider M.N., Saakyan S.A., Vilshanskaya E.V., Murashkin D.A., Zelener B.B., Zelener B.V. Self-focusing threshold of a beam of laser radiation in rubidium vapor [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 11. P. 27–30.
V. A. Sautenkov, M. N. Shneĭder, S. A. Saakyan, E. V. Vil’shanskaya, D. A. Murashkin, B. B. Zelener, and B. V. Zelener, "Self-focusing threshold of a beam of laser radiation in rubidium vapor," Journal of Optical Technology. 83(11), 667-669 (2016). https://doi.org/10.1364/JOT.83.000667
This paper describes the self-focusing of laser radiation in atomic rubidium vapor close to the 5S1/2–5P3/2 resonance transition (780 nm). The self-focusing threshold power is measured at various transverse beam sizes of the laser radiation at the input of a cell with rubidium vapor. An increase of the self-focusing threshold power was observed at small beam diameters of the laser radiation. The results of the measurements were compared with the data of theoretical studies.
laser radiation, self-focusing, atomic vapor, rubidium
Acknowledgements:The research was supported by the President of the Russian Federation (MK-4092.2014.2; HSh6614.2014.2); Russian Foundation for Basic Research (RFBR) (14-02-00828); Russian Academy of Sciences (RAS).
The authors are grateful to V. V. Semak, Virtual Laser Application Design, LLC, USA, and M. A. Gubin, P. N. Lebedev Physics Institute, Russian Academy of Sciences, for useful discussions.
OCIS codes: 190.0190, 260.5950, 300.6210
References:1. S. V. Chekalin and V. P. Kandidov, “From self-focusing light beams to femtosecond laser-pulse filamentation,” Phys.-Usp. 56(2), 123–140 (2013) [Usp. Fiz. Nauk 183(2), 133–152 (2013)].
2. G. A. Askar’yan, “The action of the field gradient of an intense electromagnetic ray on electrons and atoms,” JETP 15(6), 1083–1090 (1962) [Zh. Eksp. Teor. Fiz. 42(6), 1567–1570 (1962)].
3. R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13(15), 479–482 (1964).
4. V. I. Talanov, “Self-focusing of optical beams in nonlinear media,” JETP Lett. 2(5), 138 (1965) [Pis’ma Zh. Eksp. Teor. Fiz. 2(5), 218–222 (1965)].
5. G. Fibich and A. L. Gaeta, “Critical power for self-focusing in bulk media and in hollow waveguides,” Opt. Lett. 25(5), 335–337 (2000).
6. A. M. Zheltikov, “Self-focusing and spatial modes in free space and nonlinear waveguides,” Phys. Rev. A, 88(6), 063847 (2013).
7. G. A. Askar’yan, “Self-focusing effect,” Sov. Phys. Usp. 15(4), 517–518 (1973) [Usp. Fiz. Nauk 111(10), 249–260 (1973)].
8. V. V. Semak and M. N. Shneider, “Effect of power losses on self-focusing of high-intensity laser beam in gases,” J. Phys. D 46(18), 185502 (2013).
9. D. Grischkowsky, “Self-focusing of light by potassium vapor,” Phys. Rev. Lett. 24(16), 866–869 (1970).
10. J. E. Bjorkholm and A. A. Ashkin, “CW self-focusing and self-trapping of light in sodium vapor,” Phys. Rev. Lett. 32(4), 129–132 (1974).
11. D. Suter, The Physics of Laser–Atom Interactions (Cambridge University, Cambridge, 1997), Vol. 19.
12. S. A. Saakyan, V. A. Sautenkov, E. V. Vil’shanskaya, V. V. Vasil’ev, B. V. Zelener, and B. B. Zelener, “Frequency control of tunable lasers using a frequency-calibrated λ-meter in an experiment on preparation of Rydberg atoms in a magneto-optical trap,” Quantum Electron. 45(9), 828–832 (2015) [Kvant. Elektron. (Moscow) 45(9), 828–832 (2015)].
13. V. A. Sautenkov, T. S. Varzhapetyan, H. Li, D. Sarkisyan, and M. O. Scully, “Selective reflection of a laser beam from a dilute rubidium vapor,” J. Russ. Laser Res. 31(3), 270–275 (2010).