Detection of gas temperature using a distributed feedback laser at O2 absorption wavelength 760 nm
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Z.-R. Zhang, P.-S. Sun, H. Xia, Z. Li, T. Pang, B. Wu, X.-J. Cui, F.-Z. Dong Detection of gas temperature using a distributed feedback laser at O2 absorption wavelength 760 nm (Определение температуры газа с помощью диодного лазера с распределенной обратной связью, работающего на длине волны поглощения кислорода 760 нм) [на англ. яз.] // Оптический журнал. 2016. Т. 83. № 11. С. 34–39.
Z.-R. Zhang, P.-S. Sun, H. Xia, Z. Li, T. Pang, B. Wu, X.-J. Cui, F.-Z. Dong Detection of gas temperature using a distributed feedback laser at O2 absorption wavelength 760 nm (Определение температуры газа с помощью диодного лазера с распределенной обратной связью, работающего на длине волны поглощения кислорода 760 нм) [in English] // Opticheskii Zhurnal. 2016. V. 83. № 11. P. 34–39.
Z.-R. Zhang, P.-S. Sun, H. Xia, Z. Li, T. Pang, B. Wu, X.-J. Cui, and F.-Z. Dong, "Detection of gas temperature using a distributed feedback laser at O2 absorption wavelength 760 nm," Journal of Optical Technology. 83(11), 673-677 (2016). https://doi.org/10.1364/JOT.83.000673
Direct absorption spectroscopy for gas temperature monitoring in a tube furnace is proposed over the temperature range 300–900 K with intervals of 100 K. This detecting technique is based on the relationship between two lines’ absorption strength and temperature. The gas temperature can be inferred from the ratio of the integrated spectral area of the oxygen absorption features measured with a distributed feedback diode laser near 760 nm. Compared with the thermocouple measured results, the direct absorption spectroscopy approach also provides a temporal resolution. The results show that the accuracy is better at low temperatures than at high temperatures. In the future, we hope to improve the detection accuracy and demonstrate the utility of the diode laser absorption sensors operating for active combustion diagnostics and optimizations, simultaneously.
direct absorption spectroscopy, gas temperature, line pair absorption, DFB laser
Acknowledgements:This research was financially supported by the National Natural Science Foundation of China (Grant No. is 11204320, 41405034, 11204319) and the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2014BAC17B03) and the Special Fund for Basic Research on Scientific Instruments of the Chinese Academy of Science (YZ201315) and the CAS President’s International Fellowship Initiative (PIFI, 2015VMA007).
OCIS codes: 280.4788, 300.6380, 300.1030
References:1. Veale J.R., Wang L.G., Gallagher T.F. Remote sensing of O2 in a supersonic combustor using diode lasers and fiber optics // Proc. 4th AIAA Intern. Aerospace Planes Conf. Orlando, Florida, 1992. P. 50901–50908.
2. Amato F.D., Mazzing H. P., Castagnoli F. Methane analyzer based on TDL’s for measurements in the lower stratosphere: Design and laboratory tests // Appl. Phys. B. 2002. V. 75. № 2. P. 195–202.
3. Sauer G.C., Pisano T.J., Fitz R.D. Tunable diode laser absorption spectrometer measurements of ambient nitrogen dioxide, nitric acid, formaldehyde, and hydrogen peroxide in Parlier, California // Atmospheric Environment. 2003. V. 37. № 12. P. 1583–1591.
4. Li F., Yu X.L., Cai W.W., Ma L. Uncertainty in velocity measurement based on diode-laser absorption in nonuniform flows // Appl. Opt. 2012. V. 51. № 20. P. 4788–4797.
5. Lewander M., Guan Z.G., Persson L., Olsson A., Svanberg S. Food monitoring based on diode laser gas spectroscopy // Appl. Phys. B. 2008. V. 93. № 2–3. P. 619–625.
6. Urszula T., Patrik L., Lorenzo C., Katarzyna D., Pietro R., Sune S., Petr D., Federico G.G. Gas in scattering media absorption spectroscopy detected persistent vacuum in apple tissue after vacuum impregnation // Food Biophysics. 2012. V. 7. № 1. P. 28–34.
7. Roller C., Namjou K., Jeffers J. Simultaneous NO and CO2 measurement in human breath with a single IV–VI mid-infrared laser // Opt. Lett. 2002. V. 27. № 2. P. 107–109.
8. Matthew R.M., Yury B., Gerard W., Rafal L., Frank K.T. Recent advances of laser-spectroscopy-based techniques for applications in breath analysis // J. Breath Res. 2007. V. 1. № 1. P. 014001–014012.
9. Dong F.Z., Liu W.Q., Liu J.G., Tu X.H., Zhang Y.J., Qi F., Xie P.H., Lu Y.H., Wang S.M., Wang Y.P., Wei Q.N. On-line roadside vehicle emissions monitoring (Part I) // J. Test and Measurement Technol. 2005. V. 19. № 2. P. 110–120.
10. Dong F.Z., Liu W.Q., Liu J.G., Tu X.H., Zhang Y.J., Qi F., Xie P.H., Lu Y.H., Wang S.M., Wang Y.P., Wei Q.N. On-line roadside vehicle emissions monitoring (Part II) // J. Test and Measurement Technol. 2005. V. 19. № 3. P. 237–244.
11. John L.B., John D.B., Kevin M.L., Richard P.L., John T.P., Frederick J.T., David M.S., Krishnan R.P. Small, lowpower consumption CO-sensor for post-fire cleanup aboard spacecraft // Proc. SPIE: Next-Generation Spectroscopic Technologies. May 12–15, 2011. V. 80320D. P. 1–12.
12. Andrew D.S., Pat M., Eric H., Jim H., Mike E., Henrik H., Atilio J. Results of closed-loop coal-fired boiler operation using a TDLAS sensor and smart process control software combustion // Sci. and Technol. 2011. V. 183. № 11. P. 1282–1295.
13. Rothman L.S., Gordon I.E., Barbe A., Benner D.C., Bernath P.F., Birk M., Boudon V., Brown L.R., Campargue A., Champion J.P., Chance K., Coudert L.H., Dana V., Devi V.M., Fally S., Flaud J.M., Gamache R.R., Goldman A., Jacquemart D., Kleiner I., Lacome N., Lafferty W.J., Mandin J.Y., Massie S.T., Mikhailenko S.N., Miller C.E., Moazzen A.N., Naumenko O.V., Nikitin A.V., Orphal J., Perevalov V.I., Perrin A., Predoi C.A., Rinsland C.P., Rotger M., Šimečková M., Smith M.A.H., Sung K., Tashkun S.A., Tennyson J., Toth R.A., Vandaele A.C., Vander A.J. The HITRAN 2008 molecular spectroscopic database // J. Quantitative Spectroscopy & Radiative Transfer. 2009. V. 110. № 9–10. P. 533–572.
14. Zhou X., Liu X., Jeffries J.B., Hanson R.K. Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser // Meas. Sci. Technol. 2003. V. 14. № 8. P. 1459–1468.
15. Zhou X., Jeffries J.B., Hanson R.K. Development of a fast temperature sensor for combustion gases using a single tunable diode laser // Appl. Phys. B. 2005. V. 81. № 5. P. 711–722.
16. Nagali V., Hanson R.K. Design of a diode-laser sensor to monitor water vapor in high-pressure combustion gases // Appl. Opt. 1997. V. 36. № 36. P. 9518–9527.
17. Cooper D.E., Warren R.E. Frequency modulation spectroscopy with lead-salt diode lasers: A comparison of single-tone and two-tone techniques // Appl. Opt. 1987. V. 26. № 17. P. 3726–3732.