ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.42

Layout and design of a periscope-type refraction–diffraction objective for a mobile communication device

For Russian citation (Opticheskii Zhurnal):

Грейсух Г.И., Ежов Е.Г., Казин С.В., Степанов С.А. Компоновка и расчет рефракционно-дифракционного объектива перископического типа для мобильного устройства связи // Оптический журнал. 2016. Т. 83. № 11. С. 51–57.

 

Greisukh G.I., Ezhov E.G., Kazin S.V., Stepanov S.A. Layout and design of a periscope-type refraction–diffraction objective for a mobile communication device [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 11. P. 51–57.

For citation (Journal of Optical Technology):

G. I. Greĭsukh, E. G. Ezhov, S. V. Kazin, and S. A. Stepanov, "Layout and design of a periscope-type refraction–diffraction objective for a mobile communication device," Journal of Optical Technology. 83(11), 687-691 (2016). https://doi.org/10.1364/JOT.83.000687

Abstract:

This paper gives recommendations concerning the composition of the layout and an estimate of the basic size relationships of a long-focus periscope-type refraction–diffraction objective. The efficiency of using these recommendations is demonstrated by the results of designing an objective whose refraction lenses are made from optical plastic of just two easy-to-fabricate, commercially available types. A diffraction lens is introduced into the objective in order to simultaneously minimize the primary chromatism along with the third- and higher-order chromatic and monochromatic aberrations.

Keywords:

periscope-type objective, aberrations, diffraction lens, diffraction efficiency, relief-phase diffraction microstructure

Acknowledgements:

The research was supported by the Ministry of Education and Science of the Russian Federation (Minobrnauka).

OCIS codes: 160.4670, 160.4890

References:

1. P. Clark, “Optics of miniature camera modules,” Proc. SPIE 6342, 63421F (2006).
2. I. G. Bronshteı˘n, V. A. Zverev, I. L. Livshits, Y.-G. Kim, T.-Y. Kim, and P.-H. Jung, “Choosing an optical setup and designing compact objectives for mobile telephones,” J. Opt. Technol. 76(5), 268–273 (2009) [Opt. Zh. 76(5), 25–31 (2009)].
3. P. Clark, “Mobile platform optical design,” Proc. SPIE 9293, 92931M (2014).
4. T. V. Galstian, Smart Mini Cameras (CRC Press/Taylor & Francis, 2013).
5. http://www.gizmag.com/best‑smartphone‑camera‑photography‑accessories/37703/pictures.

6. V. G. Pospekhov and A. V. Kryukov, “Study and calculation of a compact periodic-type zoom lens,” Inzhen. Zh. Nauka Innov. (7) (2013). URL: http://engjournal.ru/catalog/pribor/optica/826.html.
7. D. Reshidko and J. Sasian, “Optical analysis of miniature lenses with curved imaging surfaces,” Appl. Opt. 54(28), E216–E223 (2015).
8. G. I. Greı˘sukh, E. G. Ezhov, and S. A. Stepanov, “Comparative analysis of the chromatism of diffraction and refractive lenses,” Komp’yut. Opt. (28), 60–65 (2005).
9. G. I. Greı˘sukh, E. G. Ezhov, and S. A. Stepanov, “Diffractive-refractive hybrid corrector for achro- and apochromatic corrections of optical systems,” Appl. Opt. 45(24), 6137–6141 (2006).
10. G. I. Greı˘sukh, E. G. Ezhov, S. V. Kazin, and S. A. Stepanov, “Diffraction–refraction corrector of the tertiary spectrum,” J. Opt. Technol. 77(9), 542–547 (2010) [Opt. Zh. 77(9), 22–29 (2010)].
11. G. I. Greı˘sukh, E. G. Ezhov, I. A. Levin, and S. A. Stepanov, “Design of achromatic and apochromatic plastic micro-objectives,” Appl. Opt. 49 (23), 4379–4384 (2010).
12. G. I. Greı˘sukh, E. G. Ezhov, I. A. Levin, A. V. Kalashnikov, and S. A. Stepanov, “Modeling and study of superachromatization of refractive and refraction–diffraction of optical systems,” Komp’yut. Opt. 36(3), 395–404 (2012).
13. G. I. Greı˘sukh, E. G. Ezhov, S. V. Kazin, and S. A. Stepanov, “Modeling and study of chromatization of optical systems whose lenses are made from materials that allow precision pressing,” Komp’yut. Opt. 39(4), 529–535 (2015).
14. http://www.edmundoptics.com/optics/optical‑lenses/aspheric‑lenses/plastic‑hybrid‑aspheric‑lenses/3200.
15. G. I. Greı˘sukh, E. G. Ezhov, S. V. Kazin, Z. A. Sidyakina, and S. A. Stepanov, “Visual estimate of the influence of the secondary diffraction orders on the quality of the image formed by a refraction–diffraction optical system,” Komp’yut. Opt. 38(3), 418–431 (2014).
16. G. I. Greı˘sukh, E. G. Ezhov, S. V. Kazin, and S. A. Stepanov, “Effect of secondary diffraction orders on imaging quality produced by a refractive/diffractive objective in a digital camera,” J. Opt. Technol. 83(3), 154–162 (2016) [Opt. Zh. 83(3), 27–31 (2016)].
17. G. I. Greı˘sukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Suppression of the spectral selectivity of two-layer phase-relief diffraction structures,” Opt. Spectrosc. 106(4), 621–626 (2009) [Opt. Spektrosk. 106(4), 694–699 (2009)].
18. G. I. Greı˘sukh, V. A. Danilov, E. G. Ezhov, S. A. Stepanov, and B. A. Usievich, “Spectral and angular dependences of the efficiency of diffraction lenses with a dual-relief and two-layer microstructure,” J. Opt. Technol. 82(5), 308–311 (2015) [Opt. Zh. 82(5), 56–61 (2015)].
19. G. I. Greı˘sukh, V. A. Danilov, E. G. Ezhov, I. A. Levin, S. A. Stepanov, and B. A. Usievich, “Comparison of electromagnetic and scalar methods for evaluation of efficiency of diffractive lenses for wide spectral bandwidth,” Opt. Commun. 338, 54–57 (2015).
20. G. I. Greı˘sukh, V. A. Danilov, E. G. Ezhov, S. A. Stepanov, and B. A. Usievich, “Spectral and angular dependences of the efficiency of relief-phase diffractive lenses with two- and three-layer microstructures,” Opt. Spectrosc. 118(6), 964–970 (2015) [Opt. Spektrosk. 118(6), 118–125 (2015)].
21. M. Laikin, Lens Design (CRC Press/Taylor & Francis, 2007).
22. http://www.radiantzemax.com.
23. http://www.hoya‑opticalworld.com/english/products/all_products.html.