ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 004.932.2, 517.968

Automatic wavelet-based segmentation of a background-and-target frame from an optoelectronic device for detection of dynamic objects in 2D images

For Russian citation (Opticheskii Zhurnal):

Катулев А.Н., Храмичев А.А. Автоматическая вейвлет-сегментация фоноцелевого кадра оптико-электронного прибора при обнаружении динамических объектов на 2D изображении // Оптический журнал. 2016. Т. 83. № 2. С. 30–39.

 

Katulev A.N., Khramichev A.A. Automatic wavelet-based segmentation of a background-and-target frame from an optoelectronic device for detection of dynamic objects in 2D images [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 2. P. 30–39.

For citation (Journal of Optical Technology):

A. N. Katulev and A. A. Khramichev, "Automatic wavelet-based segmentation of a background-and-target frame from an optoelectronic device for detection of dynamic objects in 2D images," Journal of Optical Technology. 83(2), 98-105 (2016). https://doi.org/10.1364/JOT.83.000098

Abstract:

We propose an invariant adaptive technique for automated segmentation of a target-and-background frame from an optoelectronic device for detection of dynamic objects in the image. The technique involves performing a wavelet transform on the image such that threshold processing of wavelet coefficients is optimum (in the sense of the Neyman–Pearson principle) based on a very powerful local unbiased test, and does not require any a priori data on the target environment, any reference images of the dynamic objects, or the locations and dimensions of the windows used for object detection. This is implemented solely using the information contained in images recorded by the optoelectronic device. We present an algorithm and results from an assessment of segmentation quality statistics for non-steady-state (and steady-state) images under various operating conditions. The technique described in this paper is found to be highly efficient and can be implemented as a real-time algorithm.

Keywords:

optoelectronic device, image, segmentation, window, non-steady-state background, dynamic object

OCIS codes: 100.0100; 100.2000; 110.3960; 100.2000

References:

1. A. Rosenfeld, Picture Processing by Computer (Academic Press, New York, 1969; Mir, Moscow, 1972).
2. W. K. Pratt, Digital Image Processing, Vols. 1 and 2 (Wiley, New York, 1978; Mir, Moscow, 1982).
3. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, Upper Saddle River, NJ, 2002; Tekhnosfera, Moscow, 2005).
4. M. V. Gashnikov, N. I. Glumov, N. Yu. Ilyasova, V. V. Myasnikov, S. V. Popov, V. V. Sergeev, V. A. Soyfer, A. G. Khramov, A. V. Chernov, M. A. Chicheva, and V. A. Furov, Image Processing Methods, V. A. Soyfer, ed. (FML, Moscow, 2003).
5. A. Yilmaz, K. Shafique, and M. Shah, “Target tracking in airborne forward looking infrared imagery,” Image Vis. Comput. 21, 623–635 (2003).
6. B. A. Alpatov, P. V. Babayan, O. V. Balashov, and A. I. Stepashkin, Systems for Automatic Detection and Tracking of Objects, Image Processing, and Control (Radiotekhnika, Moscow, 2008).
7. S. M. Borzov and O. I. Potaturkin, “Detection of small-size dynamic objects by a moving observation system,” Optoelectron. Instrum. Data Process. 48(1), 18–23 (2012) [Avtometriya 48(1), 22–29 (2012)].

8. V. S. Kirichuk and V. P. Kosykh, “Construction of a multichannel filter for detecting point targets in the image formed by a matrix photodetector,” Optoelectron. Instrum. Data Process. 48(5), 497–505 (2012) [Avtometriya 48(5), 82–92 (2012)].
9. S. M. Borzov, “Detection of dynamic objects on the basis of space-time anomalies in video sequences,” Optoelectron. Instrum. Data Process. 49(1), 9–13 (2013) [Avtometriya 49(1), 11–17 (2013)].
10. A. A. Dontsov and Yu. L. Koziratskii, “Localization algorithm for small objects in an image using wavelet transforms,” Optoelectron. Instrum. Data Process. 49(2), 142–147 (2013) [Avtometriya 49(2), 42–48 (2013)].
11. R. M. Crownover, Introduction to Fractals and Chaos (Jones and Bartlett, Boston, 1995; Postmarket, Moscow, 2000).
12. V. E. Zuev and M. V. Kabanov, Propagation of Optical Signals in the Earth’s Atmosphere (Sovetskoe Radio, Moscow, 1977).
13. J. Feder, Fractals (Springer, New York, 1988; Mir, Moscow, 1991).
14. M. Schroder, Fractals, Chaos, Power Laws. Miniatures from an Infinite Paradise (W. H. Freeman, New York, 1991; Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk, 2001).
15. A. N. Katulev, A. A. Kolonskov, A. A. Khramichev, and S. V. Yagolnikov, “Adaptive method and algorithm for detecting low-contrast objects with an optoelectronic device,” J. Opt. Technol. 81(2), 75–82 (2014) [Opt. Zh. 81(2), 29–39 (2014)].
16. A. A. Khramichev, M. P. Kovalchuk, and V. B. Vasilev, “Method for determining sky characteristics in the spatial frequency domains,” Vestnik MGTU im. N. E. Baumana. Seriya Priborostroenie, 245–252 (2009), Special Issue on Antennas and Devices for the Radio and Optical Spectral Regions.
17. A. P. Petukhov, Introduction to the Theory of Wavelet Bases (SpbGTU, Saint Petersburg, 1999).
18. I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, 1992; Regulyarnaya i Khaoticheskaya Dinamika, Moscow, 2001).
19. A. N. Yakovlev, Fundamentals of the Wavelet Transform as Applied to Signals (SAINS-PRESS, Moscow, 2003).
20. V. M. Svistov, Radar Signals and Radar Signal Processing (Sovetskoe Radio, Moscow, 1977).
21. Yu. A. Rozanov, Introduction to Random Processes (Springer, Berlin-Heidelberg, 1987; Nauka, Moscow, 1971).
22. D. R. Cox and D. V. Hinckley, Theoretical Statistics (Chapman and Hall, London, 1974; Mir, Moscow, 1978).
23. G. I. Ivchenko and Yu. I. Medvedev, Mathematical Statistics (Mir, Moscow, 1990; Vysshaya Shkola, Moscow, 1984).
24. A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis (Prentice Hall, Upper Saddle River, NJ, 2002; Nauka, Moscow, 1968).
25. H. L. Van Trees, Detection, Estimation, and Modulation Theory, Vol. 1 (Wiley, New York, 1968; Sovetskoe Radio, Moscow, 1972).
26. P. C. Fishburn, Utility Theory for Decision Making (Prentice Hall, Upper Saddle River, NJ, 2002; Nauka, Moscow, 1978).
27. O. B. Guzenko, A. N. Katulev, A. A. Kolonskov, and A. A. Khramichev, “Detecting a dynamic object on a complex background from a low-contrast point image on an optoelectronic device,” J. Opt. Technol. 81(11), 656–664 (2014) [Opt. Zh. 81(11), 51–61 (2014)].