УДК: 535.568, 621.375.826
Stokes polarimeter for pulsed radiation based on a series of Brewster plates
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Кожевников Н.М. Стокс-поляриметр импульсного излучения на основе последовательности брюстеровских пластинок // Оптический журнал. 2016. Т. 83. № 2. С. 62–66.
Kozhevnikov N.M. Stokes polarimeter for pulsed radiation based on a series of Brewster plates [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 2. P. 62–66.
N. M. Kozhevnikov, "Stokes polarimeter for pulsed radiation based on a series of Brewster plates," Journal of Optical Technology. 83(2), 123-126 (2016). https://doi.org/10.1364/JOT.83.000123
This paper discusses the design of a compact pulsed Stokes polarimeter with a linear series of Brewster plates as polarizers. A technique for tuning and calibrating the polarimeter is described. The error in measuring the azimuth (about 1°), ellipticity (almost 10%), and the degree of polarization (of the order of 2%) of IR radiation (λ=1.06 μm) having a width of 0.03–1.0 μs is estimated. The results are presented of measuring the polarization characteristics of a pulsed Nd laser with self-Q-switching and in the free-lasing regime.
Stokes parameters, pulsed polarimetry, Nd laser, semiconcentric resonator, resonator self-Q-switching, free-lasing regime
OCIS codes: 120.5410, 260.5430, 140.3530
References:1. R. M. Redfern and P. P. Collins, “An ultra-high-speed Stokes polarimeter for astronomy,” in High Time Resolution Astrophysics, vol. 351 of Astrophysics and Space Science Library (Springer, Berlin, 2008), pp. 205–228.
2. T. W. Cronin, E. T. Warrant, and B. Greiner, “Celestial polarization patterns during twilight,” Appl. Opt. 45, 5582–5589 (2006).
3. J. Carion, B. Le Jeune, J. Lotrain, and Y. Guern, “Polarization effects of seawater and underwater targets,” Appl. Opt. 29, 1689–1695 (1990).
4. F. J. Martinez, A. Marquez, S. Gallego, J. Frances, I. Pascual, and A. Belendez, “Retardance and flicker modeling and characterization of electro-optic linear retarders by averaged Stokes polarimetry,” Opt. Lett. 39, 1011–1014 (2014).
5. V. Sankaran, J. T. Wals, Jr., and D. J. Mailland, “Comparative study of polarized light propagation through biological tissues,” J. Biomed. Opt. 7, 300–306 (2002).
6. F. Boulwert, B. Boulbry, G. Le Brun, B. Le Juen, S. Rivet, and J. Carion, “Analysis of the depolarizing properties of irradiated pig skin,” J. Opt. A: Pure Appl. Opt. 7, 21–28 (2005).
7. I. Ionita and O. Toma, “Biological applications of ultrashort pulsed laser polarimetry,” Rom. Rep. Phys. 62(3), 628–633 (2010).
8. K. M. Salas-Alcantara, R. Espinosa-Luna, I. Torres-Gomez, and Y. O. Barmenkov, “Determination of the Muller matrix of UV-inscribed long-period fiber grating,” Appl. Opt. 53(2), 269–277 (2014).
9. E. F. Ishchenko and A. L. Sokolov, Polarization Optics: A Textbook for Colleges (Izd. MÉI, Moscow, 2005).
10. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon Press, Oxford, 1965; Nauka, Moscow, 1970).
11. B. Boulbry, J. C. Ramella-Roman, and T. A. Gerner, “Improved method for calibrating a Stokes polarimeter,” Appl. Opt. 46(35), 8533–8541 (2007).