ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.42

Effect of side diffraction orders on imaging quality produced by a refractive/diffractive objective in a digital camera

For Russian citation (Opticheskii Zhurnal):

Грейсух Г.И., Ежов Е.Г., Казин С.В., Степанов С.А. Влияние побочных дифракционных порядков на качество изображения, формируемого рефракционно-дифракционным объективом цифровой фотокамеры // Оптический журнал. 2016. Т. 83. № 3. С. 27–31.

 

Greisukh G.I., Ezhov E.G., Kazin S.V., Stepanov S.A. Effect of side diffraction orders on imaging quality produced by a refractive/diffractive objective in a digital camera [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 3. P. 27–31.

For citation (Journal of Optical Technology):

G. I. Greĭsukh, E. G. Ezhov, S. V. Kazin, and S. A. Stepanov, "Effect of side diffraction orders on imaging quality produced by a refractive/diffractive objective in a digital camera," Journal of Optical Technology. 83(3), 159-162 (2016). https://doi.org/10.1364/JOT.83.000159

Abstract:

We conduct an experimental study of the effect of the side diffraction orders on the imaging quality produced by a refractive/diffractive digital-camera objective and determine the diffractive efficiency requirements for a diffractive lens with a single-layer, single-profile, sawtooth microstructure that eliminates the impact of side-diffraction-order aureole (halo) on image quality.

Keywords:

diffractive efficiency, diffractive lens, phase-relief microstructure

Acknowledgements:

This work was financially supported by the Russian Federation Ministry of Education and Science as part of a government task order in support of scientific activities at the university.

OCIS codes: 050.1970, 160.4670, 160.4890

References:

1. G. I. Greı˘sukh, E. G. Ezhov, I. A. Levin, and S. A. Stepanov, “Design of achromatic and apochromatic plastic micro-objectives,” Appl. Opt. 49(23), 4379–4384 (2010).
2. G. I. Greı˘sukh, E. G. Ezhov, I. A. Levin, and S. A. Stepanov, “Design of plastic-lens micro-objectives in super-achromats,” Komp’yuternaya Optika 35(4), 473–479 (2011).
3. G. I. Greı˘sukh, E. G. Ezhov, I. A. Levin, A. V. Kalashnikov, and S. A. Stepanov, “Diffractive-refractive correction units for plastic compact zoom lenses,” Appl. Opt. 51(20), 4597–4604 (2012).
4. G. I. Greı˘sukh, E. G. Ezhov, Z. A. Sidyakina, and S. A. Stepanov, “Design of plastic diffractive-refractive compact zoom lenses for visible-near-IR spectrum,” Appl. Opt. 52(23), 5843–5850 (2013).
5. G. I. Greı˘sukh, E. G. Ezhov, S. V. Kazin, Z. A. Sidyakina, and S. A. Stepanov, “Visual assessment of the impact of side diffraction orders on image quality of a refractive/diffractive optical system,” Komp’yuternaya Optika 38(3), 418–424 (2014).
6. G. I. Greı˘sukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Suppression of the spectral selectivity of two-layer phase-relief diffraction structures,” Opt. Spectrosc. 106(4), 621–626 (2009) [Opt. Spektrosk. 106(4), 692–697 (2015)].
7. G. I. Greı˘sukh, V. A. Danilov, E. G. Ezhov, I. A. Levin, S. A. Stepanov, and B. A. Usievich, “Comparison of electromagnetic and scalar methods for evaluation of efficiency of diffractive lenses for wide spectral bandwidth,” Opt. Commun. 338, 54–57 (2015).
8. Edmund Optics: Plastic Hybrid Aspheric Lenses, http://www.edmundoptics.com/optics/optical‑lenses/aspheric‑lenses/plastic‑hybrid‑aspheric‑lenses/3200.
9. S. T. Bobrov, G. I. Greı˘sukh, and Yu. G. Turkevich, Optics of Diffractive Elements and Systems (Leningrad, Mashinostroenie, 1986).
10. G. I. Greı˘sukh, S. T. Bobrov, and S. A. Stepanov, Optics of Diffractive and Gradient-Index Elements and Systems (SPIE Press, Bellingham, WA, 1997).
11. V. P. Koronkevich and I. G. Palchikova, “Modern zone plates,” Avtometriya (1), 85–100 (1992).
12. ZEMAX: software for optical system design, http://www.radiantzemax.com.
13. Color CCD arrays, http://www.promelec.ru/lines/sony/color‑matrix/.
14. Spectral transmission curves for colored-glass filters, http://www.elektrosteklo.ru/Color_Glass_Spectral_Transmittance.pdf.
15. UV/VIS bandpass & laser line filters: 340–694.3 nm center wavelength, https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1001.
16. G. I. Greı˘sukh, V. A. Danilov, E. G. Ezhov, S. A. Stepanov, and B. A. Usevich, “Spectral and angular dependences of the efficiency of diffraction lenses with a dual-relief and two-layer microstructure,” J. Opt. Technol. 82(5), 308–311 (2015) [Opt. Zh. 82(5), 56–61 (2015)].
17. G. I. Greı˘sukh, V. A. Danilov, E. G. Ezhov, S. A. Stepanov, and B. A. Usievich, “Spectral and angular dependences of the efficiency of relief-phase diffractive lenses with two- and three-layer microstructures,” Opt. Spectrosc. 118(6), 964–970 (2015) [Opt. Spektrosk. 118(6), 118–125 (2015)].