ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.42

Taking diffractive efficiency into account in the design of refractive/diffractive optical systems

For Russian citation (Opticheskii Zhurnal):

Грейсух Г.И., Ежов Е.Г., Степанов С.А. Учет дифракционной эффективности при проектировании рефракционно-дифракционных оптических систем // Оптический журнал. 2016. Т. 83. № 3. С. 32–38.

 

Greisukh G.I., Ezhov E.G., Stepanov S.A. Taking diffractive efficiency into account in the design of refractive/diffractive optical systems [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 3. P. 32–38.

For citation (Journal of Optical Technology):

G. I. Greĭsukh, E. G. Ezhov, and S. A. Stepanov, "Taking diffractive efficiency into account in the design of refractive/diffractive optical systems," Journal of Optical Technology. 83(3), 163-167 (2016). https://doi.org/10.1364/JOT.83.000163

Abstract:

We propose that known methodologies for design, calculation, and optimization of optical imaging systems that include a diffractive lens be expanded to incorporate requirements to ensure that such a lens has high diffractive efficiency over a relatively broad spectral range and over a wide range of angles of incidence for incoming light relative to the lens microstructure, which is a necessary condition to ensure the nearly complete elimination of stray images due to side diffraction orders. The effectiveness of the proposed improved method is demonstrated using the example of a broad-spectral-range refractive/diffractive objective in which the broad spectral range includes the visible and near infrared.

Keywords:

refractive/diffractive optical systems, diffractive efficiency, diffractive lens, phase-relief microstructure

Acknowledgements:

This work was financially supported by the Russian Federation Ministry of Education and Science as part of a government task order in support of scientific activities at university.

OCIS codes: 050.1970, 160.4670, 160.4890

References:

1. G. I. Greisukh, V. A. Danilov, E. G. Ezhov, I. A. Levin, S. A. Stepanov, and B. A. Usievich, “Comparison of electromagnetic and scalar methods for evaluation of efficiency of diffractive lenses for wide spectral bandwidth,” Opt. Commun. 338, 54–57 (2015).
2. G. I. Greı˘sukh, V. A. Danilov, E. G. Ezhov, S. A. Stepanov, and B. A. Usievich, “Spectral and angular dependences of the efficiency of diffraction lenses with a dual-relief and two-layer microstructure,” J. Opt. Technol. 82(5), 308–311 (2015) [Opt. Zh. 82(5), 56–61 (2015)].
3. G. I. Greisukh, V. A. Danilov, E. G. Ezhov, S. A. Stepanov, and B. A. Usievich, “Spectral and angular dependences of the efficiency of relief-phase diffractive lenses with two- and three-layer microstructures,” Opt. Spectrosc. 118(6), 964–970 (2015) [Opt. Spektrosk. 118(6), 118–125 (2015)].
4. HOYA GROUP Optics Division, “Glass Molded Lenses,” http://www.hoya‑opticalworld.com/english/products/moldlenses.html.
5. Edmund Optics, http://www.edmundoptics.com.
6. G. I. Greisukh, E. G. Ezhov, and S. A. Stepanov, “Diffractive-refractive hybrid corrector for achro- and apochromatic corrections of optical systems,” Appl. Opt. 45(24), 6137–6141 (2006).
7. G. I. Greisukh, E. G. Ezhov, I. A. Levin, and S. A. Stepanov, “Design of achromatic and apochromatic plastic micro-objectives,” Appl. Opt. 49 (23), 4379–4384 (2010).
8. G. I. Greisukh, E. G. Ezhov, I. A. Levin, and S. A. Stepanov, “Design of plastic-lens micro-objectives in super-achromats,” Komp’yuternaya Optika 35(4), 473–479 (2011).
9. G. I. Greisukh, E. G. Ezhov, I. A. Levin, A. V. Kalashnikov, and S. A. Stepanov, “Diffractive-refractive correction units for plastic compact zoom lenses,” Appl. Opt. 51(20), 4597–4604 (2012).
10. G. I. Greisukh, E. G. Ezhov, Z. A. Sidyakina, and S. A. Stepanov, “Design and analysis of a compact plastic-lens refractive/diffractive variable-focal-length objective,” Kompyuternaya Optika 37(2), 210–214 (2013).
11. G. I. Greisukh, E. G. Ezhov, Z. A. Sidyakina, and S. A. Stepanov, “Design of plastic diffractive-refractive compact zoom lenses for visible-near-IR spectrum,” Appl. Opt. 52(23), 5843–5850 (2013).
12. G. I. Greisukh, E. G. Ezhov, A. V. Kalashnikov, I. A. Levin, and S. A. Stepanov, “The efficiency of relief-phase diffractive elements at a small number of Fresnel zones,” Opt. Spectrosc. 113(4), 425–430 (2012) [Opt. Spektrosk. 113(4), 468–473 (2012)].
13. G. I. Greı˘sukh, E. G. Ezhov, S. V. Kazin, and S. A. Stepanov, “Effect of side diffraction orders on image quality produced by a refractive/diffractive objective in a digital camera,” J. Opt. Technol. 83(3), 159–162 (2016) [Opt. Zh. 83(3), 27–31 (2016)].
14. Zemax: software for optical system design, http://www.radiantzemax.com.
15. S. T. Bobrov, G. I. Greisukh, and Yu. G. Turkevich, Optics of Diffractive Elements and Systems (Mashinostroenie, Leningrad, 1986).
16. G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, Optics of Diffractive and Gradient-Index Elements and Systems (SPIE Press, Bellingham, WA, 1997).