УДК: 681.785.35
LED broadband spectral ellipsometer with switching of orthogonal polarization states
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Ковалёв В.И., Руковишников А.И., Ковалёв С.В., Ковалёв В.В. Светодиодный широкодиапазонный спектральный эллипсометр с переключением ортогональных состояний поляризации // Оптический журнал. 2016. Т. 83. № 3. С. 55–59.
Kovalev V.I., Rukovishnikov A.I, Kovalev S.V., Kovalev V.V. LED broadband spectral ellipsometer with switching of orthogonal polarization states [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 3. P. 55–59.
V. I. Kovalev, A. I. Rukovishnikov, S. V. Kovalev, and V. V. Kovalev, "LED broadband spectral ellipsometer with switching of orthogonal polarization states," Journal of Optical Technology. 83(3), 181-184 (2016). https://doi.org/10.1364/JOT.83.000181
This paper describes an LED ellipsometer with a continuous wavelength range of 260–1000 nm and good technical characteristics. The measurement reproducibility and stability of the ellipsometric parameters Ψ and Δ of silicon with intrinsic dioxide at the peak wavelengths of the LED radiation are no worse than 0.001 and 0.01°, respectively. At wavelengths of 365, 375, 390, 405, 420, and 465 nm, the reproducibility of the Ψ and Δ measurements of metal films is around 0.0003 and 0.001°, respectively. The spectral resolution is 4 nm. The minimum time to measure Ψ and Δ in the entire wavelength range is 20 s.
LED spectral ellipsometer, polarization switching, achromatic compensator, high sensitivity, measurements constancy
OCIS codes: 120.2130
References:1. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, New York, 2007).
2. D. E. Aspnes, “Spectroscopic ellipsometry—past, present, and future. Review,” Thin Solid Films 571(3), 334–344 (2014).
3. V. I. Kovalev, “Methods and devices for laser and spectral ellipsometry with binary modulation of the polarization state,” Author’s abstract of doctoral dissertation, Fryazino, IRÉ RAN (2011).
4. R. M. A. Azzam, “Polarization Michelson interferometer (POLMINT): its use for polarization modulation and temporal pulse shearing,” Opt. Commun. 98(1), 19–23 (1993).
5. V. I. Kovalev, A. I. Rukovishnikov, P. I. Perov, N. M. Rossukany, and L. A. Avdeeva, “Development of optical methods and apparatus for monitoring the technology and parameters of semiconductor structures of nano- and microelectronics,” Radiotekh. Elektron. (Moscow, Russ. Fed.) 44(11), 1404–1407 (1999).
6. A. V. Leontyev, V. I. Kovalev, A. V. Khomich, F. F. Komarov, V. V. Grigoryev, and A. S. Kamishan, “PMMA and polystyrene films modification under ion implantation studied by spectroscopic ellipsometry,” Proc. SPIE 5401, 129–136 (2004).
7. K. M. G. de Lima, “A portable photometer based on LED for the determination of aromatic hydrocarbons in water,” Microchem. J. 103, 62–67 (2012).
8. S. Obeidat, B. Bai, G. D. Rayson, D. M. Anderson, A. D. Puscheck, S. Landau, and T. Glasser, “A multi-source portable light emitting diode spectrofluorometer,” Appl. Spectrosc. 62(3), 327–332 (2008).
9. L. Callegaro and E. Puppin, “Lasers and light-emitting diodes as sources for fixed-wavelength magneto-optical phase-modulated ellipsometry,” Rev. Sci. Instrum. 66(11), 5375–5376 (1995).
10. V. I. Kovalev, A. I. Rukovishnikov, S. V. Kovalev, and V. V. Kovalev, “An LED multichannel spectral ellipsometer with binarymodulation of the polarization state,” Instrum. Exp. Tech. 57(5), 607–610 (2014).
11. S. V. Kovalev, A. I. Rukovishnikov, and V. I. Kovalev, “LED spectral ellipsometer with binary modulation of the polarization state,” in Third All-Russia Youth Conference on Functional Materials and High-Purity Substances. Collection of Materials, Moscow, 2012, pp. 319–320.
12. V. I. Kovalev, M. Ali, S. V. Kovalev, and V. V. Kovalev, “Possibilities of achromatization of coaxial asymmetric phase shifters with an even number of reflections,” Opt. Spectrosc. 117(1), 118 (2014).