УДК: 666.762.36, 542.6, 546.6
Increasing the optical transparency of MgAl2O4 ceramic when two-stage uniaxial pressing is used
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Шарыпин В.В., Евстропьев С.К. Повышение оптической прозрачности керамики MgAl2O4 при применении двухстадийного одноосного прессования // Оптический журнал. 2016. Т. 83. № 3. С. 60–65.
Sharypin V.V., Evstropiev S.K. Increasing the optical transparency of MgAl2O4 ceramic when two-stage uniaxial pressing is used [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 3. P. 60–65.
V. V. Sharypin and S. K. Evstrop’ev, "Increasing the optical transparency of MgAl2O4 ceramic when two-stage uniaxial pressing is used," Journal of Optical Technology. 83(3), 185-188 (2016). https://doi.org/10.1364/JOT.83.000185
This paper presents the results of experiments on increasing the density and optical transparency of MgAl2O4 ceramic when two-stage uniaxial pressing is used. It is experimentally shown that it is possible to obtain high-density (more than 99.3% of the theoretical value) ceramic that possesses high transparency in a wide spectral range when a combination of cold pressing of nanopowders at loads of 200–400 MPa followed by hot pressing of the blanks at a temperature of 1450–1470°C and a pressure of up to 175 MPa is used.
magnesium-aluminate spinel, transmission spectra, ceramics, molding pressure
Acknowledgements:This work was partially supported by Grant No. 074-U01 of the Government of the Russian Federation.
OCIS codes: 160.0160, 240.0240, 330.0330
References:1. P. Y. Lee, H. Suematsu, K. Yatsui, and K. Niihara, “Synthesis nano-sized MgAl2 O4 spinel powder with excellent sinterability,” Mater. Sci. Forum 510–511, 338–341 (2006).
2. P. Y. Lee, H. Suematsu, T. Yano, and K. Yatsui, “Synthesis and characterization of nanocrystalline MgAl2 O4 spinel by polymerized complex method,” J. Nanopart. Res. 8, 911–917 (2006).
3. K. Prabhakaran, D. S. Patil, R. Dayal, N. M. Gokhale, and S. C. Sharma, “Synthesis of nanocrystalline magnesium aluminate (MgAl2 O4 ) spinel powder by the urea-formaldehyde polymer gel combustion route,” Mater. Res. Bull. 44(3), 613–618 (2009).
4. R. Ianoş and R. Lazău, “Combustion synthesis, characterization and sintering behavior of magnesium aluminate (MgAl2 O4 ) powders,” Mater. Chem. Phys. 115(2–3), 645–648 (2009).
5. A. N. Smirnov, V. V. Sharypin, S. K. Evstrop’ev, L. G. Levit, and V. N. Pavlova, “Mix for optical ceramic based on MgAl2 O4 spinel, method of obtaining it, and method of obtaining an optical nanoceramic based on MgAl2 O4 spinel,” Russian Patent No. 2,525,096 (2014).
6. L. M. Lu, T. C. Chang, X. H. Qi, J. Q. Luo, X. J. Wei, Q. M. Zhu, S. Sun, K. Lian, and J. Wang, “Low-temperature high-pressure preparation of transparent nanocrystalline MgAl2O 4 ceramics,” Appl. Phys. Lett. 88(21), 213120 (2006).
7. S. K. Evstrop’ev, A. N. Smirnov, and V. V. Sharypin, “Nanosize sintering additive based on B 2O3 for obtaining a ceramic from aluminum-magnesium spinel,” Steklo Keram. (7), 16–20 (2014).
8. G. E. Villalobos, J. S. Sanghera, S. Bayya, and I. D. Aggarwal, “Magnesium aluminate transparent ceramic having low scattering and absorption loss,” U.S. Patent No. 7,528,086 (2009).
9. I. Ganesh, S. Bhattacharjee, B. P. Saha, R. Johnson, and Y. R. Mahajan, “A new sintering aid for magnesium aluminate spinel,” Ceram. Int. 27(7), 773–779 (2001).
10. V. N. Vetrov, B. A. Ignatenkov, and S. K. Evstrop’ev, “Method of obtaining a polycrystalline optical material based on oxides,” Russian Patent No. 2,522,489 (2014).
11. D. W. Roy and J. L. Hastert, “Transparent polycrystalline body with high ultraviolet transmittance,” U.S. Patent No. 5,001,093 (1991).
12. K. Tsukuma, “Transparent MgAl2 O4 spinel ceramics produced by HIP post-sintering,” J. Ceram. Soc. Japan. 114(10), 802–806 (2006).
13. S. S. Balabanov, Yu. V. Bykov, S. V. Egorov, A. G. Eremeev, E. M. Gavrishchuk, E. A. Khazanov, I. B. Mukhin, O. V. Palashov, D. A. Permin, and V. V. Zelenogorskiı˘, “Yb:(YLa)2 O3 laser ceramics produced by microwave sintering,” Kvant. Elektron. (Moscow) 43(4), 396–400 (2013) [Quantum Electron. 43, 396–400 (2013)].
14. É. G. Chernevskaya and F. K. Volynets, “Method of obtaining optical ceramic blanks,” Russian Patent No. 557,079 (1977).
15. O. L. Khasanov, É. S. Dvilis, and Z. G. Bikbaeva, Methods of Compacting Construction Materials (Izd. Tomsk. Politekh. Univ., Tomsk, 2008).
16. G. I. Belykh, V. T. Gritsina, and L. V. Udalova, “Structural and mechanical properties of an optical ceramic composed of magnesium-aluminate spinel,” Vopr. At. Nauki Tekh. (3), 101–107 (2004).
17. R. Ya. Popil’skiı˘ and Yu. E. Pivinskiı˘, Pressing of Powder Ceramic Masses (Metallurgiya, Moscow, 1983).
18. O. L. Khasanov, É. S. Dvilis, and V. M. Sokolov, “Construction of the densification curves of ceramic powders based on the one-parameter pressing equation,” Ogneupory Tekh. Keram. (1), 40–44 (2001).
19. Q. Y. Chen, C. M. Meng, T. C. Lu, X. H. Chang, G. F. Ji, L. Zhang, and F. Zhao, “Enhancement of sintering ability of magnesium aluminate spinel (MgAl2 O4 ) ceramic nanopowders by shock compression,” Powder Technol. 200(1–2), 91–95 (2010).