УДК: 535.8, 537.9
Simulation analysis of atomic-force images of nanocrystal structures
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Парфенов П.С., Литвин А.П., Ушакова Е.В., Колесова Е.П., Федоров А.В., Баранов А.В. Анализ атомно-силовых изображений структур из нанокристаллов с помощью имитационного моделирования // Оптический журнал. 2016. Т. 83. № 3. С. 7–14.
Parfenov P.S., Litvin A.P., Ushakova E.V., Kolesova E.P., Fedorov A.V., Baranov A.V. Simulation analysis of atomic-force images of nanocrystal structures [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 3. P. 7–14.
P. S. Parfenov, A. P. Litvin, E. V. Ushakova, E. P. Kolesova, A. V. Fedorov, and A. V. Baranov, "Simulation analysis of atomic-force images of nanocrystal structures," Journal of Optical Technology. 83(3), 143-149 (2016). https://doi.org/10.1364/JOT.83.000143
We propose a technique for interpretation of atomic-force microscope images in the structural analysis of nanocrystals formed by precipitation from solution. This technique includes comparison with a simple model describing the random distribution of nanocrystals on a surface. The results obtained are compared to experimental data for purposes of determining the surface density of nanocrystals, both in the case where the nanocrystals are distributed in multiple layers to determine how the surface structure is organized and in the case where isolated nanocrystals are randomly distributed over the surface.
nanocrystals, atomic-force microscopy, random distribution, deconvolution
Acknowledgements:This work was performed with the financial support of the Russian Federation Ministry of Education and Science (Government Task Order No. 3.109.2014/K).
OCIS codes: 180.5810, 120.6650
References:1. S. Markutsya, “Modeling and simulation of nanoparticle aggregation in colloidal systems,” Ph.D. dissertation (Iowa State Univ., 2010), available from http://lib.dr.iastate.edu/etd/11574/.
2. E. Rabani, D. R. Reichman, P. L. Geissler, and L. E. Brus, “Drying-mediated self-assembly of nanoparticles,” Nature 426, 271–274 (2003).
3. C. G. Sztrum, O. Hod, and E. Rabani, “Self-assembly of nanoparticles in three-dimensions: formation of stalagmites,” J. Phys. Chem. B 109(14), 6741–6747 (2005).
4. G. Ge and L. Brus, “Evidence for spinodal phase separation in two-dimensional nanocrystal self-assembly,” J. Phys. Chem. B 104(41), 9573–9575 (2000).
5. P. Klapetek, M. Valtr, D. Necas, O. Salyk, and P. Dzik, “Atomic force microscopy analysis of nanoparticles in nonideal conditions,” Nanoscale Res. Lett. 6(1), 514 (2011).
6. C. Wang, J. Sun, H. Itoh, D. Shen, and J. Hu, “Cantilever tilt causing amplitude related convolution in dynamic mode atomic force microscopy,” Anal. Sci. 27(2), 143–147 (2011).
7. K. Meinander, T. N. Jensen, S. B. Simonsen, S. Helveg, and J. V. Lauritsen, “Quantification of tip-broadening in noncontact atomic force microscopy with carbon nanotube tips,” Nanotechnology 23(40), 405705 (2012).
8. E. Meyer, H. J. Hug, and R. Bennewitz, Scanning Probe Microscopy: The Lab on a Tip (Springer, Berlin, 2004).
9. E. V. Ushakova, V. V. Golubkov, A. P. Litvin, P. S. Parfenov, and A. V. Baranov, “Self-organization of lead sulfide quantum dots of various sizes,” Nauchno-Tekh. Vestn. Informats. Tekhnolog. Mekh. Opt. 6(88), 127–132 (2013).
10. E. V. Ushakova, V. V. Golubkov, A. P. Litvin, P. S. Parfenov, S. A. Cherevkov, A. V. Fedorov, and A. V. Baranov, “Self-organization of lead sulfide quantum dots of different sizes,” Proc. SPIE 9126, 912625 (2014).
11. P. S. Parfenov, A. P. Litvin, E. V. Ushakova, A. V. Veniaminov, A. V. Fedorov, and A. V. Baranov, “A porous matrix for studying the optical properties of systems of close-packed quantum dots,” J. Opt. Technol. 81(8), 449–453 (2014). [Opt. Zh. 81(8), 38–43 (2014)]
12. A. Schroedter, H. Weller, R. Eritja, W. E. Ford, and J. M. Wessels, “Biofunctionalization of silica-coated CdTe and gold nanocrystals,” Nano Lett. 2(12), 1363–1367 (2002).
13. S. Torquato, “Nearest-neighbor statistics for packings of hard-spheres and disks,” Phys. Rev. E 51(4), 3170–3182 (1995).