УДК: 535.32, 535.016
Optimization of nonlinear crystal location for intracavity second-harmonic generation
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Белашенков Н.Р., Иночкин М.В. Оптимизация положения нелинейного кристалла при внутрирезонаторной генерации второй гармоники // Оптический журнал. 2016. Т. 83. № 4. С. 24–30.
Belashenkov N.R., Inochkin M.V. Optimization of nonlinear crystal location for intracavity second-harmonic generation [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 4. P. 24–30.
N. R. Belashenkov and M. V. Inochkin, "Optimization of nonlinear crystal location for intracavity second-harmonic generation," Journal of Optical Technology. 83(4), 213-218 (2016). https://doi.org/10.1364/JOT.83.000213
We discuss optimization of locations for the nonlinear crystal in intracavity generation of second-harmonic radiation and show that optimizing the distance between the nonlinear crystal and the two-wave end mirror in the laser cavity may support nearly a 100% increase in the maximum emission power of the second harmonic. The optimum distance depends on the type of end mirror used. We describe a variety of effects that mask the advantages conferred by the optimum location of the nonlinear crystal when performing experiments on intracavity generation of strong second-harmonic laser radiation. We describe various approaches for experimental determination of the optimal location of the nonlinear crystal in the cavity.
intracavity generation of second-harmonic, phase dispersion, lasers
Acknowledgements:The authors thank L. V. Khloponin for assistance in performing the experiments and V. V. Bezzubik for assistance in writing this paper.
OCIS codes: 140.3515
References:1. V. G. Dmitriev and L. V. Tarasov, Applied Nonlinear Optics: Second-Harmonic Generators and Parametric Light Generators (Radio i Svyaz, Moscow, 1982).
2. V. A. Akulov, S. I. Kablukov, and S. A. Babin, “Frequency doubling of a tunable ytterbium-doped fibre laser in KTP crystals phase-matched in the XY and YZ planes,” Quantum Electron. 42(2), 120–124 (2012) [Kvantovaya Élektron. (Moscow) 42(2), 120–124 (2012)].
3. K. Stankov and J. Jethwa, “A new mode-locking technique using non-linear mirror,” Opt. Commun. 66(1), 41–46 (1988).
4. V. D. Volosov, N. E. Kornienko, V. N. Krylov, A. I. Ryzhkov, and V. L. Strizhevskii, “Phase effects in intracavity optical second-harmonic generation. 1. The case of free harmonic output from the cavity,” Opt. Spectrosc. 46(1), 64–68 (1979) [Opt. Spektrosk. 46(1), 119–126 (1979)].
5. V. D. Volosov, A. G. Kalintsev, and V. N. Krylov, “Phase effects in a two-pass frequency doubler,” Sov. Tech. Phys. Lett. 5(1), 13–18 (1979) [Pisma Zh. Tekh. Fiz. 5(1), 78 (1979)].
6. T. M. Yarborough, T. Falk, and G. Hitz, “Enhancement of second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
7. M. V. Inochkin and V. V. Bezzubik, “How phase dispersion of optical coatings affects intracavity second-harmonic generation of laser radiation,” J. Opt. Technol. 81(10), 565–570 (2014) [Opt. Zh. 81(10), 13–19 (2014)].
8. K. V. Vetrov, V. D. Volosov, and A. G. Kalintsev, “Character of the harmonic-generation process during intense energy exchange,” Opt. Spectrosc. 62(5), 655 (1987) [Opt. Spektrosk. 62(5), 1109–1112 (1987)].
9. N. R. Belashenkov, S. V. Gagarskii, and M. V. Inochkin, “Nonlinear refraction of light on second-harmonic generation,” Opt. Spektrosc. 66(6), 806–808 (1989) [Opt. Spektrosk. 66(6), 1383–1386 (1979)].