ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.42

Analysis of the formation of a longitudinally polarized optical needle by a lens and axicon under tightly focused conditions

For Russian citation (Opticheskii Zhurnal):

Хонина С.Н., Дегтярев С.А. Анализ формирования продольно-поляризованной световой иглы при острой фокусировке с помощью линзы и аксикона // Оптический журнал. 2016. Т. 83. № 4. С. 3–14.

 

Khonina S.N., Degtyarev S.A. Analysis of the formation of a longitudinally polarized optical needle by a lens and axicon under tightly focused conditions [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 4. P. 3–14.

For citation (Journal of Optical Technology):

S. N. Khonina and S. A. Degtyarev, "Analysis of the formation of a longitudinally polarized optical needle by a lens and axicon under tightly focused conditions," Journal of Optical Technology. 83(4), 197-205 (2016). https://doi.org/10.1364/JOT.83.000197

Abstract:

We analyze various techniques for producing a thin needle of light in which the electric field is longitudinally polarized. We consider the use of variously polarized laser beams tightly focused by a spherical lens or by large-aperture refractive or diffractive axicons. The simulations were performed using integral propagators and the numerical finite-element method. We show that a diffractive axicon is the best component for producing an elongated longitudinally polarized optical needle.

Keywords:

tight focusing, longitudinal electric field component, diffractive axicon, needle of light

Acknowledgements:

This work was performed with the financial support of the Russian Science Foundation (No. 14-19-00114).

OCIS codes: 050.1970, 260.1960, 260.5430

References:

1. L. B. Felsen, “Evanescent waves,” J. Opt. Soc. Am. 66(5), 751–760 (1976).
2. A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
3. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London A 253, 358–379 (1959).
4. B. Hao and J. Leger, “Experimental measurement of longitudinal component in the vicinity of focused radially polarized beam,” Opt. Express 15(6), 3550–3556 (2007).
5. S. W. Hell, “Far-field optical nanoscopy,” Science 316, 1153–1158 (2007).
6. S. N. Khonina and S. G. Volotovsky, “Controlling the contribution of the electric field components to the focus of a high-aperture lens using binary phase structures,” J. Opt. Soc. Am. A 27, 2188–2197 (2010).
7. Z. Chen, L. Hua, and J. Pu, “Tight focusing of light beams: effect of polarization, phase and coherence,” Prog. Opt. 57, 219–260 (2012).
8. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
9. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
10. Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24, 1793–1798 (2007).
11. G. M. Lerman and V. Levy, “Effect of radial polarization and apodization on spot size under tight focusing conditions,” Opt. Express 16, 4567–4581 (2008).
12. S. N. Khonina and A. V. Ustinov, “Reduction of focal spot size in radial polarization using a binary annular element,” Kompyuternaya Optika 36(2), 219–226 (2012).
13. L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
14. E. Yew and C. Sheppard, “Second harmonic generation polarization microscopy with tightly focused linearly and radially polarized beams,” Opt. Commun. 275, 453–457 (2007).
15. N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85, 6239–6241 (2004).
16. S. G. Bochkarev, K. I. Popov, and V. Yu. Bychenkov, “Vacuum electron acceleration by a tightly focused, radially polarized, relativistically strong laser pulse,” Plasma Phys. Rep. 37(7), 603–614 (2011) [Fiz. Plazmy 37(7), 648–660 (2011)].
17. S. N. Khonina, N. L. Kazanskiy, and S. G. Volotovsky, “Influence of vortex transmission phase function on intensity distribution in the focal area of high-aperture focusing system,” Opt. Mem. Neural Netw. 20(1), 23–42 (2011).
18. S. N. Khonina, N. L. Kazanskiy, and S. G. Volotovsky, “Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system,” J. Mod. Opt. 58(9), 748–760 (2011).
19. S. N. Khonina and D. A. Savelyev, “High-aperture binary axicons for the formation of the longitudinal electric field component on the optical axis for linear and circular polarizations of the illuminating beam,” J. Exp. Theor. Phys. 117(4), 623–630 (2013) [Zh. Eksp. Teor. Fiz. 144(4), 718–726 (2013)].
20. H. Dehez, A. April, and M. Piché, “Needles of longitudinally polarized light: guidelines for minimum spot size and tunable axial extent,” Opt. Express 20(14), 14891–14905 (2012).
21. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008).
22. K. B. Rajesh, Z. Jaroszewicz, and P. M. Anbarasan, “Improvement of lens axicon’s performance for longitudinally polarized beam generation by adding a dedicated phase transmittance,” Opt. Express 18(26), 26799–26805 (2010).
23. S. N. Khonina, “Simple phase optical elements for narrowing of a focal spot in high-numerical-aperture conditions,” Opt. Eng. 52(9), 91711 (2013).
24. V. Kotlyar and S. Stafeev, “Modeling sharp focus radially-polarized laser mode with conical and binary microaxicons,” Kompyuternaya Optika 33(1), 52–60 (2009).
25. S. N. Khonina, “Formation of an axial line with the reduced cross-section size for linear polarization of an illuminating beam by means of high-aperture binary axicons without axial symmetry,” Kompyuternaya Optika 34(4), 461–468 (2010).
26. T. Grosjean, D. Courjon, and C. Bainier, “Smallest lithographic marks generated by optical focusing systems,” Opt. Lett. 32, 976-978 (2007).
27. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
28. B. Bhuian, R. J. Winfield, S. O’Brien, and G. M. Crean, “Pattern generation using axicon lens beam shaping in two-photon polymerisation,” Appl. Surf. Sci. 254, 841–844 (2007).
29. Y. Zhang, L. Wang, and C. Zheng, “Vector propagation of radially polarized Gaussian beams diffracted by an axicon,” J. Opt. Soc. Am. A 22(11), 2542–2546 (2005).
30. A. Ustinov and S. Khonina, “Calculating the complex transmission function of refractive axicons,” Opt. Mem. Neural Netw. 21(3), 133–144 (2012).
31. M. Mansuripur, “Certain computational aspects of vector diffraction problems,” J. Opt. Soc. Am. A 6(6), 786–805 (1989).