ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 538.958

Nanostructured membranes based on a natural carbon material

For Russian citation (Opticheskii Zhurnal):

Коньков О.И., Михайлина А.А., Приходько А.В., Рожкова Н.Н. Наноструктурированные мембраны на основе природного углеродного материала // Оптический журнал. 2016. Т. 83. № 5. С. 24–28.

 

Konkov O.I., Mikhaylina A.A., Prikhidko A.V., Rozhkova N.N. Nanostructured membranes based on a natural carbon material [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 5. P. 24–28.

For citation (Journal of Optical Technology):

O. I. Konkov, A. A. Mikhaylina, A. V. Prikhodko, and N. N. Rozhkova, "Nanostructured membranes based on a natural carbon material," Journal of Optical Technology. 83(5), 286-289 (2016). https://doi.org/10.1364/JOT.83.000286

Abstract:

A well-known technology for fabricating fullerene membranes is applied to a natural carbon material—shungite. The main structural features of the new nanostructured sample are detected by optical methods (Raman scattering, scanning microscopy).

Keywords:

Raman scattering, scanning microscopy, carbon, membrane

OCIS codes: 300.6450, 180.5810

References:

1. P. R. Busek, S. J. Tsipursky, and R. Hettich, “Fullerenes from the geological environment,” Science 257, 215 (1992).
2. N. N. Rozhkova and G. V. Andrievskiı˘, “Fullerenes in shungite carbon,” in Collection of Scientific Articles of the International Symposium on Fullerenes and Fullerenelike Structures, Minsk, BGU, June 5–8, 2000, pp. 63–69.
3. N. N. Rozhkova, G. I. Emel’yanova, L. E. Gorlenko, A. V. Gribanov, and V. V. Lunin, “From a stable water dispersion of carbon nanoparticles to clusters of metastable shungite carbon,” Fiz. Khim. Stekla 37(6), 853–859 (2011).
4. E. F. Sheka and N. N. Rozhkova, “Shungite as the natural pantry of nanoscale reduced graphene oxide,” Int. J. Smart Nano Mat. 5, 1–16 (2014).
5. V. F. Masterov, A. V. Prikhod’ko, O. I. Kon’kov, and V. Yu. Davydov, “Method of obtaining crystalline fullerenes,” Russian Federation Patent No. 2,135,648 (1997), Byull. Izobr. No. 24 (1999).
6. X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz, and D. Englund, “Strong enhancement of light–matter interaction in graphene coupled to a photonic crystal nanocavity,” Nano Lett. 12, 5626 (2012).
7. Ya. B. Volkova, E. V. Rezchikova, and V. A. Shakhnov, “Methods of obtaining and results of an investigation of the properties of graphene,” Inzhenernyı˘ Zh. (6) (2013), http://engjournal.ru/catalog/nano/hidden/807.html.
8. V. V. Kovalevski, P. R. Buseck, and J. M. Cowley, “Comparison of carbon in shungite rocks to other natural carbons: an X-ray and TEM study,” Carbon 39, 243–256 (2001).
9. N. N. Rozhkova, Shungite Nanocarbon (Karel’skiı˘ Nauchnyı˘ Tsentr RAN, Petrozavodsk, 2011).
10. N. N. Rozhkova, G. I. Emel’yanova, L. E. Gorlenko, A. Jankowska, M. V. Korobov, and V. V. Lunin, “Structural and physicochemical characteristics of shungite nanocarbon as revealed through modification,” Smart Nanocompos. 1, 71–90 (2010).
11. N. N. Rozhkova, E. A. Golubev, V. I. Siklitskiı˘, and M. V. Baı˘dakova, “Structural organization of shungite carbon,” in Fullerenes and Fullerenelike Structures, P. A. Vityaz’ et al., ed. (Minsk, 2005), pp. 100–107.
12. A. C. Ferrari and J. Robertson, “Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond,” Philos. Trans. R. Soc. London 362, 2477 (2004).
13. M. A. Pimental, G. Dresselhaus, M. S. Dresselhaus, L. A. Cancado, A. Jorio, and R. Sato, “Studying disorder in graphite-based systems by Raman spectroscopy,” Phys. Chem. Chem. Phys. 9, 1276–1290 (2007).
14. N. N. Rozhkova, “Aggregation and stabilization of nanoparticles of shungite carbon,” Ekol. Khim. (4), 240–251 (2012).
15. E. A. Golubev, “Electrophysical properties and structural features of shungite (natural nanostructured carbon),” Phys. Solid State 55, 1078–1086 (2013) [Fiz. Tverd. Tela 55(5), 995–1002 (2013)].
16. J. C. Meyer, A. C. Ferrari, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
17. S. C. Lyu, H. W. Kim, S. J. Kim, J. W. Park, and C. J. Lee, “Synthesis and crystallinity of carbon nanotubes produced by a vapor-phase growth method,” J. Appl. Phys.: Part A 79, 697–700 (2004).