УДК: 535.361, 57.088.5
Studies of albumin using a combination of laser correlation spectroscopy and dielectric spectroscopy
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Непомнящая Э.К., Черемискина А.В., Величко Е.Н., Аксёнов Е.Т., Богомаз Т.А. Исследование альбумина методами лазерной корреляционной и диэлектрической спектроскопий // Оптический журнал. 2016. Т. 83. № 5. С. 50–54.
Nepomniashchaya E.K., Cheremiskina A.V., Velichko E.N., Aksenov E.T., Bogomaz T.A. Studies of albumin using a combination of laser correlation spectroscopy and dielectric spectroscopy [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 5. P. 50–54.
E. K. Nepomniashchaia, A. V. Cheremiskina, E. N. Velichko, E. T. Aksenov, and T. A. Bogomaz, "Studies of albumin using a combination of laser correlation spectroscopy and dielectric spectroscopy," Journal of Optical Technology. 83(5), 305-308 (2016). https://doi.org/10.1364/JOT.83.000305
We use laser correlation spectroscopy to study the structure of albumin conglomerates as a function of the pH of the medium. We find their structure to be related to the dielectric properties of the protein solution as determined by dielectric spectroscopy. We describe laboratory prototypes for the experimental equipment used, as well as algorithms for reduction of the resulting data.
laser light scattering, correlation spectroscopy, dielectric spectroscopy, albumin
OCIS codes: 290.0290, 300.0300, 170.0170
References:1. R. Garcia-Martinez, P. Caraceni, M. Bernardi, P. Gines, V. Arroyo, and R. Jalan, “Albumin: pathophysiologic basis of its role in the treatment of cirrhosis and its complications,” Hepatology 58(5), 1836–1846 (2013).
2. M. E. Sitar, S. Aydin, and U. Cakatay, “Human serum albumin and its relation with oxidative stress,” Clin. Lab. 59, 945–952 (2013).
3. I. S. Doronin, “Device for measuring the dimensions of nanoparticles in liquid media,” Polzunovskiı˘ Almanakh (2), 261–263 (2010).
4. D. Some and S. Kenrick, Characterization of Protein-Protein Interactions via Static and Dynamic Light Scattering (INTECH Open Access Publisher, New York, 2012).
5. S. Broillet, D. Szlag, A. Bouwens, L. Maurizi, H. Hofmann, T. Lasser, and M. Leutenegger, “Visible light optical coherence correlation spectroscopy,” Opt. Express 22(18), 21944–21957 (2014).
6. E. K. Nepomniashchaia, E. N. Velichko, and E. Aksenov, “Solution of the laser correlation spectroscopy inverse problem by the regularization method,” Universitetsk. Nauchn. Zh. (13), 13–21 (2015).
7. V. M. Rosenoer, M. Oratz, and M. A. Rothschild, Albumin: Structure, Function and Uses (Pergamon, Oxford, 1977).
8. E. Barsoukov and J. R. MacDonald, Impedance Spectroscopy: Theory, Experiment, and Applications (Wiley, New York, 2005).
9. D. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2, 48–51 (2008).
10. E. S. Buyanova and Yu. V. Emelyanova, Impedance Spectroscopy of Electrical Materials. A Textbook (Ural State University, Ekaterinburg, 2008).
11. E. Velichko, M. Baranov, E. Nepomnyashchaya, A. Cheremiskina, and E. Aksenov, “Studies of biomolecular nanomaterials for application in electronics and communications,” in Conference on Internet of Things, Smart Spaces, and Next Generation Networking (NEW2AN) (Springer, 2015), pp. 786–792.