УДК: 535.417
Holographic laser radiation requirements and hologram form factors
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Шойдин С.А. Требования к лазерному излучению и формфактор голограмм // Оптический журнал. 2016. Т. 83. № 5. С. 65–75.
Shoydin S.A. Holographic laser radiation requirements and hologram form factors [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 5. P. 65–75.
S. A. Shoĭdin, "Holographic laser radiation requirements and hologram form factors," Journal of Optical Technology. 83(5), 318-326 (2016). https://doi.org/10.1364/JOT.83.000318
We analyze the combined effect of nonuniformity of exposure over a hologram field and nonlinear response of holographic materials on the overall diffraction efficiency achievable and optimum exposure. We propose that this combined effect be described using a special parameter called the hologram form factor (by analogy with the technique used to describe interaction between bodies of complex shape), i.e., using a correction function or parameter to describe the effect of the extended nature (or shape) on its interaction with other particles and fields. We describe a method for calculating the form factor and show that the basic differences between the optimum exposures and those published in the specifications for the material can be described using correction coefficients obtained from the hologram form factor. We calculate these coefficients both for real holograms recorded using Gaussian beams and used in holographic data storage devices and for model holograms; these calculations provide a good illustration of the trends describing the average diffractive efficiency as a function of exposure. The coefficients for the real holograms are shown to be in good agreement with prior experimental data.
laser, hologram, form factor, diffraction efficiency
OCIS codes: 090.0090, 030.0030, 050.0050, 140.0140
References:1. Yu. N. Denisyuk, “Photographic reconstruction of the optical properties of an object in its own scattered radiation field,” Sov. Phys. Dokl. 7(6), 543–545 (1962) [Dokl. Akad. Nauk SSSR 44(6), 1275–1278 (1962)].
2. S. A. Shoı˘din, “Investigation of a holographic storage device in single-hologram-recording mode of operation,” Sov. J. Opt. Technol. 47(11), 631–636 (1980) [Opt. Mekh. Promst. (11), 3–8 (1980)].
3. S. A. Shoı˘din and E. A. Sander, “Recording of holograms in dynamic relaxation-free media,” Opt. Spectrosc. 58(1), 120–121 (1985) [Opt. Spektrosk. 58(1), 200–202 (1985)].
4. S. A. Shoı˘din, V. Yu. Kondakov, and G. O. Smolskiı˘, “Procedure for measurement of the diffractive efficiency of a Denisyuk hologram using a PFG-04,” in Metrological Traceability of Topographic, Geodetic, and Landscaping Work: Proceedings of a Scientific and Technical Conference (17–21 December 2001) (SGGA, Novosibirsk, 2001), p. 62.
5. S. A. Shoı˘din and V. Yu. Kondakov, “Assessment to determine the output performance of holographic viewers,” in Proceedings of the 52nd International Scientific and Technical Conference in Honor of the 70th Anniversary of the Siberian State Geodetic Academy (11–21 March 2003), part II (SGGA, Novosibirsk, 2003), p. 145.
6. V. E. Privalov, A. E. Fotiadi, and V. T. Shemanin, Lasers and Environmental Monitoring of the Atmosphere: A Textbook, 1st ed. (Lan’, Saint Petersburg, 2013).
7. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic Press, New York, 1971; Mir, Moscow, 1973).
8. A. A. Michelson, “The relative motion of the Earth and the luminiferous ether,” Am. J. Sci. Series III 22(128), 120–129 (1881).
9. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, Oxford, 1970; Nauka, Moscow, 1973).
10. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48(9), 2909–2947 (1969).
11. S. A. Shoı˘din, “Parameter requirements for holographic light sources,” Trudy SpbGU, 94–107 (2013).
12. G. I. Lashkov, A. P. Popov, and O. B. Ratner, “Three-dimensional phase recording Reoxan media with physical development of the latent image,” Opt. Spectrosc. 52(4), 350–352 (1982) [Opt. Spektrosk. 52(4) 585–588 (1982)].
13. S. A. Shoı˘din, “A study of the effect of optical system aberrations on density of data recording in holographic memory devices,” Candidate’s dissertation (S. I. Vavilov State Optical Institute, Leningrad, 1983).
14. Specifications, Slavich Production Association, http://www.slavich.ru/?id=24.
15. E. A. Sander, V. V. Shkunov, and S. A. Shoı˘din, “Experimental observation of spatial resonance in a speckle field with variable refractive index,” Sov. Phys. JETP 61(1), 68–69 (1985) [Zh. Exp. Teor. Fiz. 88(1), 116–119 (1985)].
16. B. L. Zel’dovich, V. V. Shkunov, and T. V. Yakovleva, “Holograms of speckle fields,” Sov. Phys. Usp. 29(7), 678–702 (1986) [Usp. Fiz. Nauk, 149, 511–549 (1986)].
17. V. G. Volostnikov, Techniques for Analysis and Synthesis of Light Fields (FIZMATLIT, Moscow, 2014).
18. S. A. Volyanyuk, V. I. Bezrodnyi, and E. L. Tikhonov, “A new class of optical apodizing diaphragms based on the basis of dyed polymers,” Quantum Electron. 31(5), 456–460 (2001) [Kvant. Elektron. 31(5), 456–460 (2001)].
19. A. P. Pogoda, “Methods for using grating parameters to control laser gain in phase-conjugate lasers with multiple-trip cavities,” Candidate’s dissertation (Peter the Great Saint Petersburg Polytechnical University, Saint Petersburg, 2015).