УДК: 535.317
Orthogonal aberrations: theory, methods, and practical applications in computational optics
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Бездидько С.Н. Ортогональные аберрации. Теория, методы и практика применения в вычислительной оптике // Оптический журнал. 2016. Т. 83. № 6. С. 32–43.
Bezdidko S.N. Orthogonal aberrations: theory, methods, and practical applications in computational optics [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 6. P. 32–43.
S. N. Bezdidko, "Orthogonal aberrations: theory, methods, and practical applications in computational optics," Journal of Optical Technology. 83(6), 351-359 (2016). https://doi.org/10.1364/JOT.83.000351
We generalize the Zernike polynomials to a three-dimensional region in order to provide an orthogonal representation of the wave aberration over a field or pupil, describing the wave aberration as a sum of individual orthogonal aberrations of various orders. We show that the individual orthogonal aberrations have several unique properties. The use of orthogonal aberrations led to the discovery of several previously unknown aberration properties of optical systems and has made it possible to substantially improve the formal description of the optical system design process and increase the efficiency of optical calculations.
aberration theory, orthogonal aberrations, computational optics, image quality estimation, optical systems design
OCIS codes: 080.1010, 080.2720, 080.2740, 220.0220, 080.0080, 250.0250
References:1. J. C. Maxwell, Quart. J. Pure Appl. Math. (2), 233 (1858).
2. J. C. Maxwell, Scientific Papers, Vol. 1 (Cambridge Univ. Press, Cambridge, 1890).
3. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of the Propagation, Interference and Diffraction of Light (Pergamon Press, 1965; Nauka, Moscow 1970).
4. ZEMAX Optical Design Program User’s Guide, Version 8.0, Focus Software, Inc.
5. G. G. Slyusarev, Aberration and Optical Design Theory (Mashinostroenie, Leningrad, 1969; A. Hilger, Bristol, 1984).
6. S. N. Bezdidko, “Synthesis and optimization of axially symmetric optical systems,” Doctoral Dissertation in Engineering Sciences (Moscow State University of Geodesy and Cartography, 1991).
7. F. Zernike and H. C. Brinkman, “Hypersphärische Funktionen und die in sphärische Bereichen orthogonalen Polynome,” Proc. K. Ned. Akad. Wet. 38, 161–171 (1935).
8. F. Zernike and B. R. A. Nijboer, “La théorie des images optiques,” Rev. Opt. 28, 227–235 (1949).
9. B. R. A. Nijboer, “The diffraction theory of optical aberrations,” Physica 13, 605–620 (1947).
10. W. Lukosz, “Der Einfluß der Aberrationen auf die optische Übertragungsfunktion bei kleinen Orts-Frequenzen,” Opt. Acta 10, 1–19 (1963) [also cited as J. Mod. Opt. 10, 1–19 (1963); English translation available as Opt. Acta, USAF Cambridge Research Laboratory Research Translation T-G-200/American Meteorological Society Translation T-G-200 (1963)].
11. V. N. Mahajan, Optical Imaging and Aberrations, Part II: Wave Diffraction Optics (SPIE Press, Bellingham, WA, 2001), p. 579.
12. D. Malacara and Z. Malacara, Handbook of Lens Design (Marcel Dekker Inc., NY, 1994).
13. S. N. Bezdidko, “The use of Zernike polynomials in optics,” Sov. J. Opt. Technol. 41(9), 425 (1974) [Opt. Mekh. Promst. (9), 58–62 (1974)].
14. S. N. Bezdidko, “Determination of the Zernike polynomial expansion coefficients of the wave aberration,” Sov. J. Opt. Technol. 42(7), 426 (1975) [Opt. Mekh. Promst. (7), 75–77 (1975)]
15. S. N. Bezdid’ko, “Calculation of the Strehl coefficient and determination of the best-focus plane in the case of polychromatic light,” Sov. J. Opt. Technol. 42(9), 514–516 (1975) [Opt. Mekh. Promst. (9), 20–24 (1975)].
16. S. N. Bezdid’ko, “Numerical method of calculating the Strehl coefficient using Zernike polynomials,” Sov. J. Opt. Technol. 43(4), 222–225 (1976) [Opt. Mekh. Promst. (4), 22–25 (1976)].
17. H. H. Hopkins, Wave Theory of Aberrations (Clarendon Press, Oxford, 1950).
18. S. N. Bezdidko, “Optimization of optical systems using orthogonal polynomials,” Opt. Spectrosc. 48(6), 670–671 (1980) [Opt. Spektrosk. 48, 1222–1224 (1980)].
19. S. N. Bezdidko, “New approach for optimization of optical systems,” Proc. SPIE 1574, 250–253 (1991).
20. S. N. Bezdidko, “New principles of synthesis and optimization of optical systems using a computer,” in OSA Proceedings of the International Optical Design Conference: Proceedings of the Topical Meeting (June 6–9, 1994, Rochester, NY), Vol. 22, pp. 16–22.
21. S. N. Bezdidko and T. S. Rovenskaya, Zernike Polynomials in Optical System Design, Part I. (N. E. Bauman Moscow State Technical University, Moscow 2006).
22. S. N. Bezdidko, “Procedures for the use of Zernike polynomials in computational optics,” in Fundamentals of Engineering Science: Proceedings of the International Conference in Honor of the 90th Birthday of Nobel Laureate Academician A. M. Prokhorov (International Center for Informatics and Electronics Engineering, IRE RAN, Moscow, 2006), Vol. 1, pp. 88–101.
23. S. N. Bezdidko, “Theory of orthogonal aberration and its use in lens design,” Opt. Rev. 21(5), 1–7 (2014).
24. S. N. Bezdidko, “Automated selection of correctible aberrations in optical system optimization software,” in Proceedings of the All-Union Seminar on Optical Systems Theory and Design (S. I. Vavilov State Optical Institute, Leningrad, 1983), pp. 17–22 (1983).
25. V. I. Krylov, Approximate Calculation of Integrals (Nauka, Moscow, 1967; Macmillan, New York, 1962 (trans. of previous edition); 1962 ed. reprinted by Dover, Mineola, NY, 2005).
26. N. V. Tseno, “A method for determining the contrast transfer function in optical systems,” Zh. Nauchn. Prikl. Fotogr. Kinematogr. 18(5), 360 (1973).
27. A. Maréchal and M. Françon, Diffraction, structure des images: influence de la cohérence de la lumière (Masson, Paris, 1960; Mir, Moscow, 1964).
28. S. N. Bezdidko, “Some approaches to the analysis of properties of the prototypes of optical systems and choice of the starting point,” Proc. SPIE 4768, 48–56 (2002).
29. S. A. Rodionov, Automation of Optical System Design (Mashinostroenie, Leningrad, 1982).