УДК: 535.3
Study of optical limiting mechanisms for a pyridine complex sensitized by C70 fullerene and Malachite green dye
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Лихоманова С.В., Каманина Н.В. Исследование механизмов оптического ограничения пиридинового комплекса, сенсибилизированного фуллереном С70 и красителем "Малахитовый зеленый" // Оптический журнал. 2016. Т. 83. № 6. С. 55–58.
Likhomanova S.V., Kamanina N.V. Study of optical limiting mechanisms for a pyridine complex sensitized by C70 fullerene and Malachite green dye [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 6. P. 55–58.
S. V. Likhomanova and N. V. Kamanina, "Study of optical limiting mechanisms for a pyridine complex sensitized by C70 fullerene and Malachite green dye," Journal of Optical Technology. 83(6), 369-371 (2016). https://doi.org/10.1364/JOT.83.000369
We have investigated the spectral characteristics of the molecular system of C70 fullerene- and Malachite green dye-sensitized COANP (2-cyclooctylamino-5nitropyridine) in the visible spectral region from 450 to 850 nm. We show that the spectral changes in the COANP–C70 system validate the formation of an intermolecular charge-transfer complex.
optical limiting mechanisms, carbon nanoparticles, π-conjugated molecules, COANP, complex formation
Acknowledgements:This work was performed in the Nanomaterial Photophysics Department at the S. I. Vavilov State Optical Institute Joint-Stock Corporation and was supported by Russian Foundation for Fundamental Research (RFFI) grant no. 13-03-00044 (2013–2015), by the BIOMOLEC Project under the FP7 Program, by Marie Curie Action as part of the European Program for Exchange of Scientific Personnel (2011–2015), and by work performed within the framework of the Nanocoating-State Optical Institute R&D effort (2012–2015).
OCIS codes: 190.4710
References:1. J. Wang and W. J. Blau, “Inorganic and hybrid nanostructures for optical limiting,” J. Opt. A: Pure Appl. Opt. 11, 024001 (2009).
2. S. Sreeja, S. Sreedhanya, N. Smijesh, R. Reji, and C. I. Muneera, “Organic dye impregnated poly(vinyl alcohol) nanocomposite as an efficient optical limiter: structure, morphology and photophysical properties,” J. Mater. Chem. C 1, 3851–3861 (2013).
3. R. K. H. Manshad and Q. M. A. Hassa, “Nonlinear characterization of orcein solution and dye doped polymer film for application in optical limiting,” J. Basrah Res. (Sci.). 38(4), 3696–3702 (2012).
4. S. V. Rao, P. T. Anusha, T. S. Prashant, D. Swain, and S. P. Tewari, “Ultrafast nonlinear optical and optical limiting properties of phthalocyanine thin films studied using Z-scan,” Mater. Sci. Appl. 2, 299–306 (2011).
5. C. M. B. Carvalho, T. J. Brocksom, and K. T. de Oliveira, “Tetrabenzoporphyrins: synthetic developments and applications,” Chem. Soc. Rev. 42(8), 3302–3317 (2013).
6. L. Jyothi, R. Kuladeep, and D. N. Rao, “Solvent effect on the synthesis of cobalt nanoparticles by pulsed laser ablation: their linear and nonlinear optical properties,” J. Nanophotonics 9(1), 093088 (2015).
7. S. V. Likhomanova and N. V. Kamanina, “Mechanisms of nonlinear transmission in solutions and thin films of the COANP–C70 fullerene system,” Tech. Phys. Lett. 38(5), 425–427 (2012) [Pisma Zh. Tekh. Fiz. 38(9), 59–64 (2012)].
8. N. V. Kamanina and A. I. Plekhanov, “Mechanisms of optical limiting in fullerene-doped π-conjugated organic structures demonstrated with polyimide and COANP molecules,” Opt. Spectrosc. 93(3), 408–415 (2002) [Opt. Spektrosk. 93(3), 443–452 (2002)].
9. S. V. Likhomanova and N. V. Kamanina, “Mechanisms of optical limiting in a COANP solution containing fullerenes C70: applicability for the optoelectronics devices,” Process. Appl. Ceram. 5(4), 229–231 (2011).
10. N. A. Shurpo, S. V. Likhomanova, S. V. Serov, O. V. Barinov, M. F. Borkovskii, P. V. Kuzhakov, D. N. Timonin, A. A. Kukharchik, and N. V. Kamanina, “Nanostructure materials: prospects for practical use,” Vestn. RGATU 2(23), 34–37 (2012).
11. L. P. Hammett, Physical Organic Chemistry: Reaction Rates, Equilibria, and Mechanisms (Mir, Moscow, 1972; McGraw Hill, New York, 1970).
12. N. V. Kamanina, “Fullerene-dispersed nematic liquid crystal structures: dynamic characteristics and self-organization processes,” Phys. Usp. 48(4), 419–427 (2005) [Usp. Fiz. Nauk 175(4), 445–454 (2005)].
13. C. J. Brabec, F. Padinger, N. S. Sariciftci, and J. C. Hummelen, “Photovoltaic properties of conjugated polymer/methanofullerene composites embedded in a polystyrene matrix,” J. Appl. Phys. 85(9), 6866–6872 (1999).
14. F. E. Ferdinandez, T. Timofeeva, and S. Sarkisov, “Organic Glasses and Crystals for Miniature Electro-Optic Devices: Synthesis, Characterization, and Applications,” AFRL-SR-AR-TR-04-0555 (University of Puerto Rico at Mayaguez, Oct. 2004), available at https://www.researchgate.net/publication/235030122_Organic_Glasses_and_Crystals_for_Miniature_Electro‑Optic_Devices_Synthesis_Characterization_and_Applications.
15. Y. A. Cherkasov, N. V. Kamanina, E. L. Alexandrova, V. I. Berendyaev, N. A. Vasilenko, and B. V. Kotov, “Polyimides: new properties of xerographic, thermoplastic, and liquid-crystal structures,” Proc. SPIE 3471, 254–260 (1998).