УДК: 666.762.36, 542.6, 546.6
Effect of hot-pressing temperature on the properties of aluminum–magnesium spinel optical ceramic
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Шарыпин В.В., Евстропьев С.К. Влияние температуры горячего прессования на свойства оптической керамики из алюмомагниевой шпинели // Оптический журнал. 2016. Т. 83. № 6. С. 59–62.
Sharypin V.V., Evstropiev S.K. Effect of hot-pressing temperature on the properties of aluminum–magnesium spinel optical ceramic [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 6. P. 59–62.
V. V. Sharypin and S. K. Evstrop’ev, "Effect of hot-pressing temperature on the properties of aluminum–magnesium spinel optical ceramic," Journal of Optical Technology. 83(6), 372-374 (2016). https://doi.org/10.1364/JOT.83.000372
In this paper, we describe the results of research on the effect of the hot-pressing temperature on the spectral properties, density, and microhardness of aluminum–magnesium spinel ceramic. We fabricated experimental samples of a high-density ceramic (density exceeding 99% of the theoretical density) with high transparency over a broad spectral range by using a combination of cold pressing of nanopowders and subsequent hot pressing of the blanks.
aluminum–magnesium spinel, transmission spectra, nanopowder, ceramic, microhardness, pressing temperature
Acknowledgements:This work was partially supported by Russian Federation Government Grant No. 074-U01.
OCIS codes: 160.0160; 240.0240; 330.0330
References:1. P. Y. Lee, H. Suematsu, K. Yatsui, and K. Niihara, “Synthesis nanosized MgAl2 O4 spinel powder with excellent sinterability,” Mater. Sci. Forum 510–511, 338–341 (2006).
2. P.-Y. Lee, H. Suematsu, T. Yano, and K. Yatsui, “Synthesis and characterization of nanocrystalline MgAl2 O4 spinel by polymerized complex method,” J. Nanopart. Res. 8, 911–917 (2006).
3. K. Prabhakaran, D. Patil, R. Dayal, N. M. Gokhale, and S. C. Sharma, “Synthesis of nanocrystalline magnesium aluminate (MgAl2 O4 ) spinel powder by the urea-formaldehyde polymer gel combustion route,” Mater. Res. Bull. 44, 613–618 (2009).
4. R. Ianoş and R. Lazău, “Combustion synthesis, characterization and sintering behavior of magnesium aluminate (MgAl2 O4) powders,” Mater. Chem. Phys. 115, 645–648 (2009).
5. A. N. Smirnov, V. V. Sharypin, S. K. Evstrop’ev, L. G. Levit, and V. N. Pavlova, “An optical-ceramic charge based on spinel (MgAl2O4), a method for producing said charge, and a method for production of optical nanoceramics based on spinel (MgAl2O4),” Russian Patent 2525096 (2014).
6. T. C. Lu, X. H. Chang, J. Q. Qi, X. J. Luo, Q. M. Wei, S. Zhu, K. Sun, J. Lian, and L. M. Wang, “Low-temperature high-pressure preparation of transparent nanocrystalline MgAl2O4 ceramics,” Appl. Phys. Lett. 88, 213120 (2006).
7. S. K. Evstrop’ev, A. N. Smirnov, and V. V. Sharypin, “Nanosize sintering additive based on B2 O3 for obtaining ceramic from aluminum-magnesium spinel,” Glass Ceram. 71(7–8), 236–239 (2014) [Steklo i Keramika (7), 16–20 (2014)].
8. V. V. Sharypin and S. K. Evstrop’ev, “Increasing the optical transparency of MgAl2 O4 ceramic when two-stage uniaxial pressing is used,” J. Opt. Technol. 83(3), 185–188 (2016) [Opt. Zh. 83(3), 60–65 (2016)].
9. I. Ganesh, S. Bhattacharjee, B. P. Saha, R. Johnson, and Y. R. Mahajan, “A new sintering aid for magnesium aluminate spinel,” Ceram. Int. 27, 773–779 (2001).
10. R. O. Loutfy, J. L. Sepulveda, and S. Chang, “Ready-to-sinter spinel nanomixture and method for preparing same,” US Patent Application 2010/0056357 Al (2010).
11. V. N. Vetrov, B. A. Ignatenkov, and S. K. Evstrop’ev, “Method for obtaining an oxide-based polycrystalline optical material,” Russian Patent 2522489 (2014).
12. D. W. Roy and J. L. Hastert, “Transparent polycrystalline body with high ultraviolet transmittance,” US Patent 5001093 (1991).
13. K. Tsukuma, “Transparent MgAl2 O4 spinel ceramics produced by HIP post-sintering,” J. Ceram. Soc. Jpn. 114(1334), 802–806 (2006).
14. G. I. Belykh, V. T. Gritsyna, and L. V. Udalova, “Structural and mechanical properties of a magnesium-aluminum spinel optical ceramic,” Vopr. At. Nauki Tekh. (3), 101–107 (2004).
15. V. S. Bessmertnyı˘, A. V. Simachev, N. I. Minko, V. P. Krokhin, P. S. Dyumina, and S. I. Semenenko, “Method for obtaining synthetic minerals,” Russian Patent 2346887 (2009).
16. A. V. Nomoev, “Supermicrohardness in ceramics based on nanodisperse alumina powders with additives of magnesia and silica nanopowders,” Tech. Phys. Lett. 36(21), 46–53 (2010) [Pis’ma Zh. Tekh. Fiz., 36(21), 46–53 (2010)].