Optical and photovoltaic properties of ZnS nanocrystals fabricated on Al:ZnO films using the SILAR technique
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
M. Mehrabian Optical and photovoltaic properties of ZnS nanocrystals fabricated on Al:ZnO films using the SILAR technique (Оптические и фотовольтаические свойства нанокристаллов сульфида цинка, нанесенных на пленки ZnO:Al методом последовательной послойной реакционной адсорбции (метод SILAR)) [на англ. яз.] // Оптический журнал. 2016. Т. 83. № 7. С. 42–50.
M. Mehrabian Optical and photovoltaic properties of ZnS nanocrystals fabricated on Al:ZnO films using the SILAR technique (Оптические и фотовольтаические свойства нанокристаллов сульфида цинка, нанесенных на пленки ZnO:Al методом последовательной послойной реакционной адсорбции (метод SILAR)) [in English] // Opticheskii Zhurnal. 2016. V. 83. № 7. P. 42–50.
M. Mehrabian, "Optical and photovoltaic properties of ZnS nanocrystals fabricated on Al:ZnO films using the SILAR technique," Journal of Optical Technology. 83(7), 422-428 (2016). https://doi.org/10.1364/JOT.83.000422
Hybrid solar cells with ITO/AZO/ZnS/P3HT/PCBM/Ag structure were fabricated so that, in the synthesis of the ZnS layer, the successive ion layer absorption and reaction (SILAR) technique was used. At first, Al-doped ZnO (AZO) layers with different molar concentrations of Al were deposited on ITO-glass substrates, and the optimum concentration was determined to produce the maximum power conversion efficiency. The ZnS layer with different SILAR cycles was then grown on ITO/AZO to fabricate the highly efficient solar cell. X-ray diffraction analysis confirmed the formation of pure, nanocrystalline, and cubic structure of ZnS. Optical measurements showed that the band gap of ZnS quantum dots varies in a narrow range of 3.8–4.0 eV, depending on the number of SILAR cycles. The effect of the number of cycles on the solar cell performance was investigated. The photovoltaic properties of fabricated cells under the illumination of one sun (AM 1.5, 100 mW/cm2) have been examined. The results indicated that changing the number of SILAR cycles improves the performances of the fabricated photovoltaic cells; a high efficiency of 3.25% was observed at six cycles.
Photovoltaic, Al:ZnO, ZnS nanoparticles, SILAR technique
OCIS codes: 160.2100, 160.4760, 160.6000, 230.0250
References:1. Obaid A.S., Mahdi M., Hassan Z., Bououdina M. PbS nanocrystal solar cells fabricated using microwaveassisted chemical bath deposition // Intern. J. Hydrogen Energy. 2013. V. 38. Is. 2. P. 807–815.
2. Kamat P.V., Tvrdy K., Baker D.R., Radich J.G. Beyond photovoltaics: Semiconductor nanoarchitectures for liquid-junction solar cells // Chem. Rev. 2010. V. 110. № 11. P. 6664–6688.
3. Ruhle S., Shalom M., Zaban A. Quantum-dot-sensitized solar cells // Chem. Phys. Chem. 2010. V. 11. P. 2290–2304.
4. Sero I.M., Bisquert J. Breakthroughs in the development of semiconductor-sensitized solar cells // J. Phys. Chem. Lett. 2010. V. 1. P. 3046–3052.
5. Yang L., Zhang Z., Fang Sh., Gao X., Obata M. Influence of the preparation conditions of TiO2 electrodes on the performance of solid-state dye-sensitized solar cells with CuI as a hole collector // Solar Energy. 2007. V. 81. P. 717–722.
6. Gregg B.A., Pichot F., Ferrere S., Fields C.L. Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces // J. Phys. Chem. B. 2001. V. 105. P. 1022–1429.
7. Nusbaumer H., Moser J.E., Zakeeruddin S.M., Nazeeruddin M.K., Grätzel M. CoII(dbbip)22+ Complex Rivals Tri-iodide/Iodide redox mediator in dye-sensitized photovoltaic cells // J. Phys. Chem. B. 2001. V. 105. № 43. P. 10461–10464.
8. Rawalekar S., Verma S., Kaniyankandy S., Ghosh H.N. Interfacial electron transfer dynamics in quinizarin sensitized ZnS nanoparticles: Monitoring charge transfer emission // Langmuir. 2009. V. 25. № 5. P. 168–172.
9. Popescu V., Nascu H.I., Darvasi E. Optical properties of PbS-CdS multilayers and mixed (CdS + PbS) thin films deposited on glass substrate by spray pyrolysis // J. Optoelectronics and Advanced Mater. 2006. V. 8. P. 1187–1193.
10. Prabaha S., Suryanaranyanan N., Rajasekar K., Srikanth S. Lead selenide thin films from vacuum evaporation method-structural and optical properties // Chalcogenide Lett. 2009. V. 6. P. 203–211.
11. Farady M., Hochbaum A.I., Goldberger J., Zhang M., Tang P. Synthesis and thermoelectrical characterization of lead chalcogenide nanowires // Advanced Mater. 2007. V. 19. P. 3047–3051.
12. Pathan H.M., Lokhande C.D. Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method // Bull. Mater. Sci. 2004. V. 27. P. 85–111.
13. Joo J., Kim D., Yun D.J., Jun H., Rhee S.W., Lee J.S., Yong K., Kim S., Jeon S. The fabrication of highly uniform ZnO/CdS core/shell structures using a spin-coating-based successive ion layer adsorption and reaction method // Nanotechnology. 2010. V. 21. № 32. P. 325604–6.
14. Im S.H., Kim H.J., Seok S.I. Near-infrared responsive PbS-sensitized photovoltaic photodetectors fabricated by the spin-assisted successive ionic layer adsorption and reaction method // Nanotechnology. 2012. V. 22. P. 2157–2165.
15. Zhang L., Qin D., Yang G., Zhang Q. The investigation on synthesis and optical properties of ZnS:Co nanocrystals by using hydrothermal method // Chalcogenide Lett. 2012. V. 9. P. 93–98.
16. Palve A.M., Garje S.S. A facile synthesis of ZnS nanocrystallites by pyrolysis of single molecule precursors, Zn (cinnamtscz)2 and ZnCl2 (cinnamtsczH)2 // Bull. Mater. Sci. 2011. V. 34. P. 667–671.
17. Tu W., Liu H. Rapid synthesis of nanoscale colloidal metal clusters by microwave irradiation // J. Mater. Chem. 2000. V. 10. P. 2207–2211.
18. Zhijie S.Q., Zeng X., Zhang C., Shi M., Tan F., Wang Z. Synthesis of MDMO-PPV capped PbS quantum dots and their application to solar cells // Polymer. 2008. V. 49. P. 4647–4651.
19. Yang Z., Zhang Q., Xi J., Park K., Xu X., Liang Z., Cao G. CdS/CdSe co-sensitized solar cell prepared by jointly using successive ion layer absorption and reaction method and chemical bath deposition process // Sci. Advanced Mater. 2012. V. 4. P. 1013–1017.
20. Shen Q., Kobayashi J., Diguna L.J., Toyoda T. Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells // Appl. Phys. 2008. V. 103. Is. 8. P. 084304–084309.
21. Rahdar A. Effect of mercaptoethanol and Na2S dropwise addition rate on zinc sulfide semiconductor nanocrystals: Synthesis and characterization // J. Nanostructure in Chem. 2013. V. 3. Is. 61. P. 8865–8869.
22. Musat V., Teixeira B.H., Fortunato E., Monteiro R.C.C., Vilarinho P. Al-doped ZnO thin films by sol-gel method // Surf. Coat. Technol. 2004. V.180. P. 659–662.
23. Karaagac H., Yengel E., Islam M.S. Physical properties and heterojunction device demonstration of aluminumdoped ZnO thin films synthesized at room ambient via sol-gel method // J. Alloys and Compounds. 2012. V. 521. P. 155–162.
24. Mondal S., Kanta K.P., Mitra P. Preparation of Al-doped ZnO (AZO) thin film by SILAR // J. Phys. Sci. 2008. V. 12. Р. 221–229.
25. Gonzalez A.E.J., Urueta J.A.S. Optical transmittance and photoconductivity studies on ZnO:Al thin films prepared by the sol-gel technique // Solar Energy Materials and Solar Cells. 1998. V. 52. № 3. P. 345–353.
26. Xue S.W., Zu X.T., Zheng W.G., Deng H.X., Xiang X. Effects of Al doping concentration on optical parameters of ZnO:Al thin films by sol-gel technique // Physica B. 2006. V. 381 P. 209–213.
27. Tewari S., Bhattacharjee A. Structural, electrical, optical and sensing properties on spray-deposited aluminum doped ZnO thin films // Indian Academy of Sciences. 2011. V. 76. № 1. P. 153–163.