ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 544.164

Luminescence thermochromism in glass with copper-containing molecular clusters

For Russian citation (Opticheskii Zhurnal):

Бабкина А.Н., Кипрушкина Т.С., Ширшнев П.С., Никоноров Н.В. Люминесцентный термохромизм в стекле с молекулярными кластерами меди // Оптический журнал. 2016. Т. 83. № 7. С. 58–63.

 

Babkina A.N., Kiprushkina T.S., Shirshnev P.S., Nikonorov N.V. Luminescence thermochromism in glass with copper-containing molecular clusters [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 7. P. 58–63.

For citation (Journal of Optical Technology):

A. N. Babkina, T. S. Kiprushkina, P. S. Shirshnev, and N. V. Nikonorov, "Luminescence thermochromism in glass with copper-containing molecular clusters," Journal of Optical Technology. 83(7), 434-437 (2016). https://doi.org/10.1364/JOT.83.000434

Abstract:

We study the luminescence properties of inorganic glasses doped with molecular clusters containing copper; such glass may be used as a sensor element in fiber-optic temperature sensors. We present luminescence spectra for potassium-aluminum-borate, sodium-aluminum-borosilicate, and alkali-aluminum-silicate glasses on the 293–623 K temperature interval. We demonstrate that the peak of the luminescence band undergoes a reversible shift within this temperature range (95 nm for borate glass, 90 nm for borosilicate glass, and less than 5 nm for silicate glass).

Keywords:

luminescence thermochromism, molecular cluster, univalent copper ions, inorganic glass

Acknowledgements:

This work was financially supported by the Russian Federation Ministry of Education and Science (Scientific Research and Development Program Identifier RFMEFI58114X0006).

OCIS codes: 160.4670, 160.2540, 160.2750, 160.6840

References:

1. M. Eichelbaum and K. Rademann, “Plasmonic enhancement or energy transfer? On the luminescence of gold-, silver-, and lanthanide-doped silicate glasses, and its potential for light-emitting devices,” Adv. Funct. Mater. 19, 2045–2052 (2009).
2. A. V. Dotsenko, L. B. Glebov, and V. A. Tsechomsky, Physics and Chemistry of Photochromic Glasses (CRC Press, 1997).
3. A. A. Kim, N. V. Nikonorov, A. I. Sidorov, and V. A. Tsekhovskiı˘, “Nonlinear optical response of potassium-aluminum-borate glasses containing copper-halogenide nanocrystals,” Nauchno-Tekhn. Vestnik SpbGU ITMO 73(3), 26–29 (2011).
4. E. M. Likovich, R. Jaramillo, K. J. Russell, S. Ramanathan, and V. Narayanamurti, “High-current-density monolayer CdSe/ZnS quantum dot light-emitting devices with oxide electrodes,” Adv. Mater. 23, 4521–4525 (2011).
5. J. Malhotra, D. J. Hagan, and B. G. Potter, “Laser-induced darkening in semiconductor-doped glasses,” J. Opt. Soc. Am. B 8, 1531–1536 (1991).
6. J. Velázquez, V. Tikhomirov, L. Chibotaru, N. Cuong, A. Kuznetsov, V. Rodríguez, M. Nguyen, and V. Moshchalkov, “Energy level diagram, and kinetics of luminescence of Ag nanoclusters dispersed in a glass host,” Opt. Express 20, 13582–13591 (2012).
7. A. I. Ignatev, N. V. Nikonorov, A. I. Sidorov, and T. A. Shakhverdov, “Influence of UV irradiation, and heat treatment on the luminescence of molecular silver clusters in photo-thermo-refractive glasses,” Opt. Spectrosc. 114(5), 769–774 (2013) [Opt. Spektrosk. 114(5), 838–844 (2013)].
8. S. A. Babin, S. K. Golushko, A. M. Tsyba, G. P. Cheydo, I. S. Shelezhba, and S. R. Shakirov, “Concept for a multipurpose coal-mine safety system using fiber-optic technology,” Vychisl. Tekhnol. 2013. 18(5), 95–100 (2013).
9. J. Mandal, T. Sun, K. T. Grattan, and A. T. Augousti, “Fiber laser-based temperature sensor systems using uniform wavelength-matched Bragg grating reflectors,” Sens. Actuators A 120, 451–461 (2005).
10. S. Javdani, M. Fabian, M. Ams, J. Carlton, T. Sun, and K. T. Grattan, “Fiber Bragg grating-based system for 2-D analysis of vibrational modes of a steel propeller blade,” J. Lightwave Technol. 32, 3991–3997 (2014).
11. M. Ams, A. Pal, R. J. Williams, R. Sen, M. J. Withford, T. Sun, and K. T. Grattan, “Fibre Bragg grating sensors for radiation insensitive measurements,” in 19th Optoelectronics and Communications Conference (OECC) and the 39th Australian Conference on Optical Fibre Technology (ACOFT) (Engineers Australia, 2014), p. 1067.
12. S. F. León-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er 3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B 176, 1167–1175 (2013).
13. A. H. Khalid and K. Kontis, “Thermographic phosphors for high temperature measurements: Principles, current state of the art, and recent applications,” Sensors 8, 5673–5744 (2008).
14. H. Hardt and A. Pierre, “Fluorescence thermochromism of pyridine copper iodides and copper iodide,” Z. Anorg. Allg. Chem. 402, 107–112 (1973).
15. A. N. Babkina, A. I. Sidorov, and P. S. Shirshnev, “Luminescence properties of potassium aluminoborate glasses with copper(I) ions at cryogenic temperatures,” Opt. Spectrosc. 116(4), 593–594 (2014) [Opt. Spektrosk. 116(4), 638–640 (2014)].
16. A. N. Babkina, N. V. Nikonorov, T. A. Shakhverdov, P. S. Shirshnev, and A. I. Sidorov, “Luminescent thermochromism in potassium-aluminaborate glass with copper-containing molecular clusters at elevated temperatures,” Opt. Mater. 36, 773–777 (2014).
17. H. Chen, M. Matsuoka, J. Zhang, and M. Anpo, “The reduction behavior of the Cu ion species exchanged into Y zeolite during the thermovacuum treatment,” J. Catal. 228, 75–79 (2004).
18. A. N. Pestryakov, V. P. Petranovskii, A. Kryazhov, O. Ozhereliev, N. Pfänder, and A. Knop-Gericke, “Study of copper nanoparticles formation on supports of different nature by UV–Vis diffuse reflectance spectroscopy,” Chem. Phys. Lett. 385, 173–176 (2004).
19. M. Turel, A. Duerkop, A. Yegorova, Y. Scripinets, A. Lobnik, and N. Samec, “Detection of nanomolar concentrations of copper (II) with a Tb-quinoline-2-one probe using luminescence quenching or luminescence decay time,” Anal. Chim. Acta 644, 53–60 (2009).
20. R. Debnath, “On the excitation of the 3 E luminescent state of Cu+ ions in glass,” J. Lumin. 43, 375–377 (1989).
21. T. Srikumar, I. Kityk, C. S. Rao, Y. Gandhi, M. Piasecki, P. Bragiel, V. R. Kumar, and N. Veeraiah, “Photostimulated optical effects, and some related features of CuO mixed Li2 O–Nb 2O 5–ZrO2–SiO2 glass ceramics,” Ceram. Int. 37, 2763–2779 (2011).
22. Y. Lu, W. Wei, and W. Chen, “Copper nanoclusters: synthesis, characterization and properties,” Chin. Sci. Bull. 57, 41–47 (2012).
23. A. Babkina, A. Sidorov, and P. Shirshnev, “Thermochromic effect in aluminoborate glasses with copper (I), and chlorine ions,” J. Opt. Technol. 81, 50–52 (2014) [Opt. Zh. 81(1), 66–69 (2014)].
24. D. S. Agafonova, E. V. Kolobkova, and A. I. Sidorov, “Temperature dependence of the luminescence intensity in optical fibers of oxyfluoride glass with CdS and CdSxSe1−x quantum dots,” Tech. Phys. Lett. 39(7), 629–631 (2013).
25. A. N. Babkina, N. V. Nikonorov, V. A. Tsekhomskii, and P. S. Shirshnev, “The effect of temperature on the exciton absorption of copper chloride, and copper bromide nanocrystals in potassium-aluminum-borate glass,” Glass Phys. Chem. 41(1), 81–88 (2015) [Fiz. Khim Stekla 41(1), 113–120 (2015)].