ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

Ultrafast dynamics of ionization processes during the formation of subwavelength ripples

For Russian citation (Opticheskii Zhurnal):

Y. P. Yuan, J. M. Chen Ultrafast dynamics of ionization processes during the formation of subwavelength ripples (Сверхбыстрая динамика процессов ионизации при образовании субволновой ряби) [на англ. яз.] // Оптический журнал. 2016. Т. 83. № 8. С. 3–11.

 

Y. P. Yuan, J. M. Chen Ultrafast dynamics of ionization processes during the formation of subwavelength ripples (Сверхбыстрая динамика процессов ионизации при образовании субволновой ряби) [in English] // Opticheskii Zhurnal. 2016. V. 83. № 8. P. 3–11.

For citation (Journal of Optical Technology):

Y. P. Yuan and J. M. Chen, "Ultrafast dynamics of ionization processes during the formation of subwavelength ripples," Journal of Optical Technology. 83(8), 452-458 (2016). https://doi.org/10.1364/JOT.83.000452

Abstract:

Ultrafast pulses have time durations shorter than or close to the characteristic times of many physical/chemical phenomena, which make it possible to control ionization processes. During femtosecond laser induced subwavelength ripple formation, the control of ionization processes is investigated by a quantum model which considers both the laser wave–particle duality and transient localized changes of material properties. The effects of the fluence and the pulse duration on ionization processes are also discussed. It is found that, by changing the incident fluence and the pulse duration, free electron distributions and the feature sizes of subwavelength ripples can be manipulated.

Keywords:

ultrafast dynamics, ionization processes, subwavelength ripples, femtosecond laser

Acknowledgements:

This research was financially supported by Beijing National Science Foundation (Grant No.Z140002), Municipal Science and Technology Project (Grant No. D151100001615001) and China Postdoctoral Science Foundation.

OCIS codes: 140.3390, 220.4241, 320.7090

References:

1. Sugioka K., Cheng Y. Femtosecond laser 3D micromachining for microfluidic and optofluidic applications // London: Springer, 2013. P. 19–30.
2. Jiang L., Tsai H.L. Plasma modeling for ultrashort pulse laser ablation of dielectrics // J. Appl. Phys. 2006. V. 100. P. 023116-1–023116-7.
3. Englert L., Rethfeld B., Haag L., Wollenhaupt M., Sarpe-Tudoran C., Baumert T. Control of ionization processes in high band gap materials via tailored femtosecond pulses // Opt. Express. 2007. V. 15. P. 17855–17862.
4. Lindinger A., Lupulescu C., Plewicki M., Vetter F., Merli A., Weber S.M., Wöste L. Isotope selective ionization by optimal control using shaped femtosecond laser pulses // Phys. Rev. Lett. 2004. V. 93. P. 033001-1–033001-4.

5. Renard M., Hertz E., Lavorel B., Faucher O. Controlling ground-state rotational dynamics of molecules by shaped femtosecond laser pulses // Phys. Rev. A. 2004. V. 69. P. 043401-1–043401-6.
6. Akagi H., Otobe T., Staudte A., Shiner A., Turner F., Dörner R., Villeneuve D.M., Corkum P.B. Laser tunnel ionization from multiple orbitals in HCl // Science. 2009. V. 325. P. 1364–1367.
7. Yuan Y.P., Jiang L., Li X., Wang C., Xiao H., Lu Y., Tsai H. Formation mechanisms of sub-wavelength ripples during femtosecond laser pulse train processing of dielectrics // J. Phys. D. 2012. V. 45. P. 175301-1–175301-6.
8. Makina V.S., Pestov Y.I., Makin R.S., Vorob’ev A.Ya. Plasmon-polariton surface modes and nanostructuring of semiconductors by femtosecond laser pulses // J. Opt. Technol. 2009. V. 76. P. 555–559.
9. Shi X., Jiang L., Li X., Zhang K., Yu D., Lu Y. Temporal femtosecond pulse shaping dependence of laserinduced periodic surface structures in fused silica // J. Appl. Phys. 2014. V. 116. P. 033104-1–033104-4.
10. Ionin A.A., Kudryashov S.I., Seleznev L.V., Sinitsyn D.V., Apostolova T. Nanostructuring of the surface of silicate glass by femtosecond laser pulses in the UV range // J. Opt. Technol. 2014. V. 81. P. 262–269.
11. Bashir S., Rafique M.S., Husinsky W. Femtosecond laser-induced subwavelength ripples on Al, Si, CaF2 and CR-39 // Nucl. Instrum. Meth. B. 2012. V. 275. P. 1–6.
12. Hwang T.Y., Vorobyev A.Y., Guo C. Surface-plasmon-enhanced photoelectron emission from nanostructurecovered periodic grooves on metals // Phys. Rev. B. 2009. V. 79. P. 085425-1–085425-4.
13. Ran L., Qu S. Structure formation on the surface of alloys irradiated by femtosecond laser pulses // Appl. Surf. Sci. 2010. V. 256. P. 2315–2318.
14. Rebollar E., Vázquez de Aldana J.R., Pérez-Hernández J.A., Ezquerra T.A., Moreno P., Castillejo M. Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films // Appl. Phys. Lett. 2012. V. 100. P. 041106-1–041106-4.
15. Rosenfeld A., Rohloff M., Hömn S., Krüger J., Bonse J. Formation of laser-induced periodic surface structures on fused silica upon multiple parallel polarized double-femtosecond-laser-pulse irradiation sequences // Appl. Surf. Sci. 2012. V. 258. P. 9233–9236.
16. Emmony D.C., Howson R.P., Willis L.J. Laser mirror damage in germanium at 10.6 μm // Appl. Phys. Lett. 1973. V. 23. P. 589–590.
17. Sipe J.E., Young J.F., Preston J.S., van Driel H.M. Laser-induced periodic surface structure. I. Theory // Phys. Rev. B. 1983. V. 27. P. 1141–1154.
18. Le Harzic R., Dörr D., Sauer D., Neumeier M., Epple M., Zimmermann H., Stracke F. Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate // Opt. Lett. 2011. V. 36. P. 229–231.
19. Dong Y., Molian P. Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser // Appl. Phys. Lett. 2004. V. 84. P. 10–12.
20. Forster M., Kautek W., Faure N., Audouard E., Stoian R. Periodic nanoscale structures on polyimide surfaces generated by temporally tailored femtosecond laser pulses // Phys. Chem. Chem. Phys. 2011. V. 13. P. 4155–4158.
21. Hsu E.M., Crawford T.H., Tiedje H.F., Haugen H.K. Periodic surface structures on gallium phosphide after irradiation with 150 fs–7 ns laser pulses at 800 nm // Appl. Phys. Lett. 2007. V. 91. P. 111102-1–111102-3.
22. Murphy R.D., Torralva B., Adams D.P., Yalisove S.M. Polarization dependent formation of femtosecond laserinduced periodic surface structures near stepped features // Appl. Phys. Lett. 2014. V. 104. P. 231117-1–231117-5.
23. Jia T., Chert H., Huang M., Zhao F., Qiu J., Li R., Xu Z., He X., Zhang J., Kuroda H. Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses // Phys. Rev. B. 2005. V. 72. P. 125429-1–125429-4.
24. Liang F., Vallée R., Chin S.L. Pulse fluence dependent nanograting inscription on the surface of fused silica // Appl. Phys. Lett. 2012. V. 100. P. 251105-1–251105-4.
25. Wu Q., Ma Y., Fang R., Liao Y., Yu Q., Chen X., Wang K. Femtosecond laser-induced periodic surface structure on diamond film // Appl. Phys. Lett. 2003. V. 82. P. 1703–1705.
26. Bonse J., Krüger J. Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon // J. Appl. Phys. 2010. V. 108. P. 034903-1–034903-5.
27. Dai Huynh T.T., Petit A., Semmar N. Picosecond laser induced periodic surface structure on copper thin films // Appl. Surf. Sci. 2014. V. 302. P. 109–113.

28. Albu C., Dinescu A., Filipescu M., Ulmeanu M., Zamfirescu M. Periodical structures induced by femtosecond laser on metals in air and liquid environments // Appl. Surf. Sci. 2013. V. 278. P. 347–351.
29. Perry J.M., Zhou K., Harms Z.D., Jacobson S.C. Ion transport in nanofluidic funnels // ACS Nano. 2010. V. 4. P. 3897–3902.
30. Xiao S., Drachev V.P., Kildishev A.V., Ni X., Chettiar U.K., Yuan H.K., Shalaev V.M. Loss-free and active optical negative-index metamaterials // Nature. 2010. V. 466. P. 735–738.
31. Hendrickson G.R., Smith M.H., South A.B., Lyon L.A. Design of multiresponsive hydrogel particles and assemblies // Adv. Funct. Mater. 2010. V. 20. P. 1697–1712.
32. Bhuyan M.K., Courvoisier F., Lacourt P.A., Jacquot M., Salut R., Furfaro L., Dudley J.M. High aspect ratio nanochannel machining using single shot femtosecond Bessel beams // Appl. Phys. Lett. 2010. V. 97. P. 081102–081103.
33. Liao Y., Shen Y., Qiao L., Chen D., Cheng Y., Sugioka K., Midorikawa K. Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes // Opt. Lett. 2013. V. 38. P. 187–189.
34. Klein-Wiele J.H., Simon P. Sub-wavelength pattern generation by laser direct writing via repeated irradiation // Opt. Express. 2013. V. 21. P. 626–630.
35. Yuan Y.P., Jiang L., Li X., Wang C., Lu Y. Adjustment of ablation shapes and subwavelength ripples based on electron dynamics control by designing femtosecond laser pulse trains // J. Appl. Phys. 2012. V. 112. P. 103103-1–103103-6.
36. Yuan Y.P., Jiang L., Li X., Wang C., Qu L.T., Lu Y. Simulation of rippled structure adjustments based on localized transient electron dynamics control by femtosecond laser pulse trains // Appl. Phys. A. 2013. V. 111. P. 813–819.