УДК: 681.785.555
Designing compact S-shaped optical layouts of spectrographs
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Ахметгалеева Р.Р., Муслимов Э.Р., Павлычева Н.К. Расчёт компактных S-образных оптических схем спектрографов // Оптический журнал. 2016. Т. 83. № 8. С. 32–40.
Akhmetgaleeva R.R., Muslimov E.R., Pavlycheva N.K. Designing compact S-shaped optical layouts of spectrographs [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 8. P. 32–40.
R. R. Akhmetgaleeva, É. R. Muslimov, and N. K. Pavlycheva, "Designing compact S-shaped optical layouts of spectrographs," Journal of Optical Technology. 83(8), 475-480 (2016). https://doi.org/10.1364/JOT.83.000475
This paper describes a technique for designing a compact spectrograph whose optical layout includes a holographic diffraction grating for correcting aberrations and a concave projection mirror. The image quality is modeled and evaluated for a specific layout. Spectrographs are presented that are constructed using an analogous layout but have increased speed or improved spatial resolution.
spectrograph, concave nonclassical diffraction grating, holographic grating, aberrations correction
Acknowledgements:This work was carried out with the support of the fund to promote the development of small businesses in the scientific-and-engineering sphere (State Contract No. 11717p/17263 on April 5, 2013).
OCIS codes: 120.6200, 230.1950, 090.2890, 220.1000
References:1. N. K. Pavlycheva, Spectral Devices with Nonclassical Diffraction Gratings, N. K. Pavlycheva, ed. (Izd. Kazan. Gos. Tekhn. Univ., Kazan, 2003).
2. Compendium Spectrometer Module (Carl Zeiss MicroImaging GmbH, Jena, 2009).
3. C. Palmer, Diffraction Grating Handbook, C. Palmer and E. Loewen, eds. (Newport Corp., Rochester, New York, 2005).
4. G. M. Gibson, M. Dienerowitz, P. A. Kelleher, A. R. Harvey, and M. J. Padgett, “A multi-object spectral imaging instrument,” J. Opt. 15(8), 085302 (2013).
5. Q. Zhou, J. Pang, X. Li, K. Ni, and R. Tian, “Concave grating miniature spectrometer with an expanded spectral band by using two entrance slits,” Chin. Opt. Lett. 13(11), 110501 (2015).
6. S. Capel-Cuevas, N. López-Ruiz, A. Martinez-Olmos, M. P. Cuéllar, M. del Carmen Pegalajar, A. J. Palma, I. de Orbe-Payá, and L. F. Capitán-Vallvey, “A compact optical instrument with artificial neural network for pH determination,” Sensors 12(12), 6746–6763 (2012).
7. É. R. Muslimov, “A compact spectrometer for the visible and near-IR regions,” in Collection of the Papers of the Eleventh International Conference on Applied Optics, St. Petersburg, 21–24 October 2014, vol. 1, pp. 105–108.
8. M. Khasan, “Optical layouts of compact spectrographs based on concave reflective holographic diffraction gratings for the study of nanomaterials,” Author’s Abstract of Dissertation, Kazan’, KNITU-KAI (2012).
9. M. Haupt, “Optical design of a low-loss demultiplexer for optical communications systems in the visible range,” Proc. SPIE 8550, 85500J (2012).
10. Yu. V. Bazhanov, “Demultiplexers based on diffraction gratings and their limiting characteristics,” J. Opt. Technol. 73(7), 445–448 (2006).
11. O. Pawluczyk, “Applications of multichannel imaging spectrometer,” Proc. SPIE 5578, 227–238 (2004).
12. A. Barducci, D. Guzzi, C. Lastri, V. Nardino, I. Pippi, and V. Raimondi, “Compressive sensing for hyperspectral Earth observation from space,” Proceedings of the International Conference on Space Optics (ICSO), Tenerife, Canary Islands, Spain, 7–10 October 2014, pp. 29–36.
13. R. Mouroulis, “Compact infrared spectrometers,” Proc. SPIE 7298, 7298 (2009).
14. M. V. Schulmerich, J. H. Cole, K. A. Dooley, M. D. Morris, J. M. Kreider, and S. A. Goldstein, “Optical clearing in transcutaneous Raman spectroscopy of murine cortical bone tissue,” J. Biomed. Opt. 13(2), 021108 (2008).