ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.015 535.135

Reflectance and transmittance of light for weakly inhomogeneous plates in the lower orders of perturbation theory

For Russian citation (Opticheskii Zhurnal):

Фурс А.Н. Коэффициенты отражения и пропускания света слабо неоднородными пластинами в низших порядках теории возмущений // Оптический журнал. 2016. Т. 83. № 9. С. 10–18.

 

Furs A.N. Reflectance and transmittance of light for weakly inhomogeneous plates in the lower orders of perturbation theory [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 9. P. 10–18.

For citation (Journal of Optical Technology):

A. N. Furs, "Reflectance and transmittance of light for weakly inhomogeneous plates in the lower orders of perturbation theory," Journal of Optical Technology. 83(9), 518-524 (2016). https://doi.org/10.1364/JOT.83.000518

Abstract:

The reflectance and transmittance of light normally incident on a transparent, weakly inhomogeneous dielectric plate have been found in zeroth-, first-, and second-order perturbation theory. The resulting analytical expressions are general and can be applied to arbitrary one-dimensional permittivity profiles of the plate. The reflectances calculated by perturbation theory for a structure consisting of several isotropic layers whose refractive indices differ only slightly are compared with their exact values.

Keywords:

reflectance and transmittance, weakly inhomogeneous isotropic media, perturbation theory, covariant methods in optics

OCIS codes: 260.2110, 260.2710

References:

1. L. M. Brekhovskikh, Waves in Layered Media (Nauka, Moscow, 1973).
2. Yu. A. Kravtsov and Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media (Nauka, Moscow, 1980).
3. R. K. Luneburg, Mathematical Theory of Optics (Univ. of California Press, Berkley, 1964).
4. J. L. Synge, Geometrical Optics. An Introduction to Hamilton’s Method (Cambridge Univ. Press, New York, 1954).
5. S. He, “Factorization of a dissipative wave equation and the Green functions technique for axially symmetric fields in a stratified slab,” J. Math. Phys. 33, 953–966 (1992).
6. R. Krueger and R. Ochs, “A Green’s function approach to the determination of internal fields,” Wave Motion 11, 525–543 (1989).
7. S. Tretyakov and M. Oksanen, “Electromagnetic waves in layered general biisotropic structures,” J. Electromagn. Waves Applic. 6, 1393–1411 (1992).
8. G. Kristensson and R. Krueger, “Direct and inverse scattering in the time domain for a dissipative wave equation. Part 1: Scattering operators,” J. Math. Phys. 27, 1667–1682 (1986).
9. V. Weston, “Time-domain wave splitting of Maxwell’s equations,” J. Math. Phys. 34, 1370–1392 (1993).
10. L. M. Barkovskiı˘ and G. N. Borzdov, “Tensor impedance and the conversion of light beams by systems of anisotropic layers. I. Normal incidence,” Opt. Spectrosc. (USSR) 39(1), 85–87 (1975) [Opt. Spektrosk. 39(1), 150–154 (1975)].
11. G. N. Borzdov, L. M. Barkovskiı˘, and V. I. Lavrukovich, “Tensor impedance and the conversion of light beams by systems of anisotropic layers. II. Oblique incidence,” Zh. Prikl. Spektrosk. 25(3), 526–531 (1976).
12. L. M. Barkovsky, G. N. Borzdov, and A. V. Lavrinenko, “Fresnel’s reflection and transmission operators for stratified gyroanisotropic media,” J. Phys. A: Math. Gen. 20, 1095–1106 (1987).
13. L. M. Barkovskii, G. N. Borzdov, and F. I. Fedorov, “Evolution operators in the electromagnetics of spatially dispersive media,” J. Mod. Opt. 37, 85–97 (1990).
14. L. M. Barkovskı˘ and A. N. Furs, Operator Methods of Describing Optical Fields in Complex Media (Belaruskaya Navuka, Minsk, 2003).
15. F. I. Fedorov, The Optics of Anisotropic Media (Izd. AN BSSR, Minsk, 1958).
16. F. I. Fedorov, Gyrotropy Theory (Nauka i Tekhnika, Minsk, 1976).
17. A. N. Furs and T. A. Alexeeva, “Reflection and transmission of weakly inhomogeneous anisotropic and bianisotropic layers calculated by perturbation method,” J. Phys. A: Math. Theor. 41, 065203 (2008).
18. J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields (McGraw–Hill, New York, 1965; Nauka, Moscow, 1978).
19. A. N. Furs, “Excitation of surface electromagnetic waves at planar interfaces between two gyrotropic media,” J. Opt. Technol. 83(2), 81–87 (2016) [Opt. Zh. 83(2), 8–16 (2016)].