ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

Analysis of pulse propagation through multilayer plasmonic waveguides in the quasi-bound mode region

For Russian citation (Opticheskii Zhurnal):

S. Golmohammadi, S. Ghandi-Parsi Analysis of pulse propagation through multilayer plasmonic waveguides in the quasi-bound mode region (Анализ распространения импульса через многослойные плазмонные волноводы в области квазисвязанных мод) [на англ. яз.] // Оптический журнал. 2016. Т. 83. № 9. С. 19–27.

 

S. Golmohammadi, S. Ghandi-Parsi Analysis of pulse propagation through multilayer plasmonic waveguides in the quasi-bound mode region (Анализ распространения импульса через многослойные плазмонные волноводы в области квазисвязанных мод) [in English] // Opticheskii Zhurnal. 2016. V. 83. № 9. P. 19–27.

For citation (Journal of Optical Technology):

S. Golmohammadi and S. Ghandi-Parsi, "Analysis of pulse propagation through multilayer plasmonic waveguides in the quasi-bound mode region," Journal of Optical Technology. 83(9), 525-531 (2016). https://doi.org/10.1364/JOT.83.000525

Abstract:

We present a numerical analysis of surface plasmon dispersion and the nonlinear nature of wave propagation on different smooth waveguides with lossy noble metal films. We also analyze the effective parameters that can affect the dispersion behavior of a thin dielectric slab waveguide embedded in a symmetric metal film. Three kinds of metal (silver, gold, and copper) with Johnson–Christy constants have been utilized in waveguides. Four kinds of dielectric material (air, Teflon, FR-4, and silicon) have been employed in the insulator layer of the metal–insulator–metal waveguide. The dispersion curve of the metal–insulator–metal waveguide with different metal and dielectric arrangements has been studied numerically. By multi-nominal fitting of dispersion curves, we have derived the nonlinear properties of Gaussian (chirped) wave propagation, dispersion length, and pulse broadening through a three-layer plasmonic waveguide. A comparison of three-layered plasmonic waveguides with different guiding layers has been accomplished. Simulation results have shown that dispersion curves with a larger peak and a quasi-bound mode cause the Gaussian waves to be dispersed and broadened during longer traveling distances. The achieved results serve an impressive function in the design of optical switches and delay lines.

Keywords:

surface plasmons, quasi-bound mode, dispersion curve, metal film

OCIS codes: 240.6680, 030.4070, 260.2030, 160.3900

References:

1. Tamir T., Burke J.J., and Stegeman G.I. Surface polariton-like waves guided in thin, lossy metal films // Phys. Rev. B. 1986. V. 33. P. 5186–5201.
2. Dionne J.A., Sweatlock L.A., Atwater H. A., and Polman A. Planar metal and loss beyond the free electron model // Phys. Rev. B. 2005. V. 72 P. 075405(11).
3. Weeber J.C., Krenn J.R., Dereux A., Lamprecht B., Lacroute Y., Goudonnet J.P. Near-field observation of surface plasmon polariton propagation on thin metal stripes // Phys. Rev. B. 2001. V. 64. P. 045411.
4. Silly F., Gusev A.O., Taleb A., Charra F., and Pileni M.-P. Direct observation of the coupled plasmon modes in an ordered hexagonal monolayer of metal nanoparticles // Phys. Rev. Lett. 2000. V. 84. P. 5840.
5. Dawson P., de Fornel F., and Goudonnet J.P. Imaging of surface plasmon using a photon scanning tunneling microscope // Phys. Rev. Lett. 1994. V. 72. P. 2927.
6. Zayats A.V. and Smolyaninov I.I. Near-field photonics: Surface plasmon polaritons and localised surface plasmons // J. Opt. A: Pure and Appl. Opt. 2003. V. 5. P. S16–S50.
7. Pettit R.B., Silcox J., and Vincent R. Measurement of surface-plasmon dispersion in oxidized aluminum films // Phys. Rev. B. 1975. V. 11. P. 3116.
8. Vincent R. and Silcox J. Dispersion of radiative surface plasmons in aluminum films by electron scattering // Phys. Rev. Lett. 1973. V. 31. P. 1487.
9. Velinov T., Somekh M.G., and Liu S. Direct far-field observation of surface-plasmon propagation by photoinduced scattering // Appl. Phys. Lett. 1999. V. 75. P. 3908.
10. Ritchie R.H. Plasma losses by fast electrons in thin films // Phys. Rev. 1957. V. 106. P. 874.
11. Kliewer K.L. and Fuchs R. Collective electronic motion in a metallic slab // Phys. Rev. 1967. V. 153. P. 498.
12. Mott N.F. and Jones H. The Properties of Metals and Alloys. Clarendon, 1963.
13. Roberts S. Optical properties of copper // Phys. Rev. 1960. V. 118. P. 1509.
14. Johnson P.B. and Christy R.W. Optical constants of the noble metals // Phys. Rev. B. 1972. V. 6. P. 4370.
15. Nestell J.E. and Christy R.W. Derivation of optical constants of metals from thin-film measurements at oblique incidence // Appl. Opt. 1972. V. 11. P. 643.
16. Nestell J.E. and Christy R.W. Addendum to: Optics of thin metal films // Am. J. Phys. 1971. V. 39. P. 313.
17. Holland L. Vaccum Deposition of Thin Films. Chapman and Hall, 1966.
18. Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, 1988.
19. Kliewer K.L. and Fuchs R. Optical modes of vibration in an ionic crystal slab // Phys. Rev. 1965. V. 140. P. A2076.
20. Kliewer K.L. and Fuchs R. Optical modes of vibration in an ionic crystal slab including retardation. I. Nonradiative region // Phys. Rev. 1966. V. 144. P. 495.
21. Kliewer K.L. and Fuchs R. Optical modes of vibration in an ionic crystal slab including retardation. II. Radiative region // Phys. Rev. 1966. V. 150. P. 573.
22. Nelder J.A. and Mead R. A simplex method for function minimization // Comput. J. 1965. V. 7. P. 308.
23. Agrawal G.P. Nonlinear Fiber Optics. Academic Press, 2013.
24. Stolen R.H., Bjorkholm J.E., and Ashkin A. Phase matched three-wave mixing in silica fiber optical waveguides // Appl. Phys. Lett. 1974. V. 24. P. 308.