ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.514.2

Forming cylindrical light beams with axially symmetric polarization distribution by using a light-emitting silicon-carbide-based planar waveguide

For Russian citation (Opticheskii Zhurnal):

Медведев А.В., Дукин А.А., Феоктистов Н.А., Голубев В.Г. Формирование цилиндрических пучков света с аксиально-симметричным распределением поляризации с использованием светоизлучающего планарного волновода на основе карбида кремния // Оптический журнал. 2016. Т. 83. № 9. С. 3–9.

 

Medvedev A.V., Dukin A.A., Feoktistov N.A., Golubev V.G. Forming cylindrical light beams with axially symmetric polarization distribution by using a light-emitting silicon-carbide-based planar waveguide [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 9. P. 3–9.

For citation (Journal of Optical Technology):

A. V. Medvedev, A. A. Dukin, N. A. Feoktistov, and V. G. Golubev, "Forming cylindrical light beams with axially symmetric polarization distribution by using a light-emitting silicon-carbide-based planar waveguide," Journal of Optical Technology. 83(9), 513-517 (2016). https://doi.org/10.1364/JOT.83.000513

Abstract:

Plasma-chemical gas-phase deposition has been used to fabricate a luminescent asymmetric planar waveguide based on an amorphous silicon carbide film of micron thickness deposited on a circular quartz substrate with a transparent cylindrical side surface. When photoluminescence is excited in an asymmetric planar waveguide, peaks of linearly polarized (P and S) radiation are recorded in the emission spectra from the side surface of the substrate, caused by emission in the leaky modes of the planar waveguide. A spherical mirror converted the radiation coming out of the side surface of the sample substrate located at the center of the mirror into a cylindrical light beam. The spectra of the P- and S-polarized radiation have been studied at different points of the cross section of the cylindrical beam. It is shown that the cylindrical beam possesses radial and azimuthal polarizations.

Keywords:

planar waveguide, mode spectrum, photoluminescence, polarization, leaky modes, cylindrical beams, radial polarization, azimuthal polarization

OCIS codes: 230.7390, 030.4070 130.5440, 250.5230 130.5440

References:

1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009).
2. R. Oron, Sh. Blit, N. Davidson, A. Friesem, S. Bomson, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
3. Y. Kozawa and Sh. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30(22), 3063–3065 (2005).
4. S. E. Scelton, M. Sergides, R. Saija, M. A. Iati, O. M. Marago, and P. H. Jones, “Trapping volume control in optical tweezers using cylindrical vector beams,” Opt. Lett. 38(1), 28–29 (2013).
5. L. E. Hennemann, A. Kolloch, A. Kern, J. Mihaljevic, J. Boneberg, P. Leiderer, A. J. Meixner, and Z. Dai, “Assessing the plasmonics of gold nano-triangles with higher-order laser modes,” Beilstein J. Nanotechnol. 3(1), 674–683 (2012).
6. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
7. S. Quabis, R. Dorn, M. Eberler, O. Glökl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1–6), 1–7 (2000).
8. Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
9. D. P. Biss and T. G. Brown, “Polarization-vortex-driven second-harmonic generation,” Opt. Lett. 28(11), 923–925 (2003).
10. G. Bautista, M. J. Huttunen, J. M. Kontio, J. Simonen, and M. Kauranen, “Third- and second-harmonic generation microscopy of individual metal nanocones using cylindrical vector beams,” Opt. Express 21(19), 21918–21923 (2013).
11. D. P. Biss, K. S. Youngworth, and T. G. Brown, “Dark-field imaging with cylindrical-vector beams,” Appl. Opt. 45(3), 470–479 (2006).
12. T. Ellenbogen, D. Wang, and K. B. Crozier, “Generation of quasi-coherent cylindrical vector beams by leaky mirrorless laser,” Opt. Express 20(27), 28862–28870 (2012).
13. J. Valenta, T. Ostatnicky, I. Pelant, R. G. Elliman, J. Linnros, and B. Honerlage, “Microcavity-like leaky mode emission from a planar optical waveguide made of luminescent silicon nanocrystals,” J. Appl. Phys. 96(9), 5221–5225 (2004).
14. K. Luterova, E. Skopalova, I. Pelant, M. Rejman, T. Ostatnicky, and J. Valenta, “Active planar optical waveguides with silicon nanocrystals: leaky modes under different ambient conditions,” J. Appl. Phys. 100(7), 074307 (2006).
15. A. Penzkofer, W. Holzer, H. Tillmann, and H. H. Hörhold, “Leaky-mode emission of luminescent thin films on transparent substrates,” Opt. Commun. 229(1–6) 279–290 (2004).
16. D. Yokoyama, M. Moriwake, and Ch. Adachi, “Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films,” J. Appl. Phys. 103(12), 123104 (2008).
17. L. M. Blinov, G. Cipparrone, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Mirrorless lasing from nematic liquid crystals in the plane wave-guide geometry without refractive-index or gain modulation,” Appl. Phys. Lett. 89, 031114 (2006).
18. T. Ma, J. Xu, K. Chen, J. Du, and W. Li, “Full-color light emission from amorphous SiC x:H with organic–inorganic structures,” J. Appl. Phys. 88(11), 6408–6412 (2000).
19. R. S. Sussmann and R. Ogden, “Photoluminescence and optical properties of plasma-deposited amorphous Si xC 1−x alloys,” Philos. Mag. B 44(1), 137–158 (1981).
20. Y. Tawada, K. Tsuge, M. Kondo, H. Okamoto, and Y. Hamakawa, “Properties and structure of a-SiC:H for high efficiency a-Si solar cell,” J. Appl. Phys. 53(7), 5273–5281 (1982).
21. C. Summonte, R. Rizzoli, M. Bianconi, A. Desalvo, D. Iencinella, and F. Giorgis, “Wide band-gap silicon-carbon alloys deposited by very high frequency plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 96(7), 3987–3997 (2004).
22. A. V. Medvedev, N. A. Feoktistov, S. A. Grudinkin, A. A. Dukin, and V. G. Golubev, “Planar light-emitting microcavities based on hydrogenated amorphous silicon carbide,” Semiconductors 48(10), 1374–1380 (2014) [Fiz. Tekh. Poluprovodn. 48(10), 1409–1415 (2014)].
23. D. Chen, J. Xu, B. Qian, S. Chen, J. Mei, W. Li, L. Xu, and K. Chen, “Luminescence behavior from amorphous silicon-carbide film-based optical microcavities,” Mater. Chem. Phys. 111(2–3), 279–282 (2008).
24. A. A. Dukin, N. A. Feoktistov, V. G. Golubev, A. V. Medvedev, A. B. Pevtsov, and A. V. Sel’kin, “Polarization splitting of optical resonant modes in a-Si:H/a-SiO x:H microcavities,” Phys. Rev. E 67(4), 046602 (2003).
25. A. Yariv and P. Yukh, Optical Waves in Crystals (Mir, Moscow, 1987).
26. V. G. Golubev, A. V. Medvedev, A. B. Pevtsov, A. V. Sel’kin, and N. A. Feoktistov, “Photoluminescence of thin amorphous-nanocrystalline silicon films,” Phys. Solid State 41(1), 137–142 (1999) [Fiz. Tverd. Tela (Leningrad) 41(1), 153–158 (1999)].
27. V. A. Vasil’ev, A. S. Volkov, E. Musabekov, E. I. Terukov, V. E. Chelnokov, S. V. Chernyshev, and Yu. M. Shernyakov, “Photoluminescence of a-Si 1−xC x:H amorphous films,” Sov. Phys. Semicond. 24(4), 445–449 (1990) [Fiz. Tekh. Poluprovodn. 24(4), 710–716 (1990)].