ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 621.383

Use of adaptive integration time to improve the dynamic range of a focal plane array

For Russian citation (Opticheskii Zhurnal):

Дражников Б.Н., Козлов К.В., Кузнецов П.А., Хамидуллин К.А., Деомидов А.Д. Обеспечение расширенного динамического диапазона матричного фотоприемного устройства с помощью адаптивного времени накопления // Оптический журнал. 2016. Т. 83. № 9. С. 60–63.

 

Drazhnikov B.N., Kozlov K.V., Kuznetsov P.A., Khamidullin K.A., Deomidov A.D. Use of adaptive integration time to improve the dynamic range of a focal plane array [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 9. P. 60–63.

For citation (Journal of Optical Technology):

B. N. Drazhnikov, K. V. Kozlov, P. A. Kuznetsov, K. A. Khamidullin, and A. D. Deomidov, "Use of adaptive integration time to improve the dynamic range of a focal plane array," Journal of Optical Technology. 83(9), 556-558 (2016). https://doi.org/10.1364/JOT.83.000556

Abstract:

We provide a block diagram of an array element in a large-scale integrated photosignal read circuit with adaptive integration time (which, in this application, depends on the ambient light level). We propose a mathematical description of the light detection process using a focal-plane array with this type of large-scale integrated circuit. We demonstrate that if the focal-plane array transfer function is nonlinear (due to the additive integration time), this will expand the input-signal dynamic range to 130–140 dB. We conclude that a focal-plane array with a log-linear transfer function has a better signal-to-noise ratio (10%–30% higher, with low input current) than one with a logarithmic transfer function, with no degradation to the dynamic range. We provide equations to obtain the dynamic range and signal-to-noise ratio from the transfer function for a focal-plane array.

Keywords:

large-scale integrated circuit, adaptive integration time, photodetector array, dynamic range, transfer function

OCIS codes: 250.3140

References:

1. E. Khamsehashari and Y. Audet, “Response mode detection of a linear-logarithmic image sensor using a current-mode readout circuit,” Sci. J. Circuits Syst. Signal Process. 2(1), 16–21 (2013).
2. X. Y. Qian, H. Yu, S. S. Chen, and K. S. Low, “An adaptive integration time CMOS image sensor with multiple readout channels,” IEEE Sens. J. 13(12), 4931–4939 (2013).
3. S. Vargas-Sierra, G. Liñán-Cembrano, and Á. Rodríguez-Vázquez, “A 151 dB high dynamic range CMOS image sensor chip architecture with tone mapping compression embedded in-pixel,” IEEE Sens. J. 15(1), 180–195 (2015).
4. J. M. Lloyd, Thermal Imaging Systems (Plenum, New York, 1975; Mir, Moscow, 1978), pp. 68–116.
5. A. M. Filachev, I. I. Taubkin, and M. A. Trishenkov, Solid-State Photoelectronic: Fundamental Physics (Fizmatkniga, Moscow, 2005), pp. 307–361.
6. P. A. Kuznetsov and S. S. Khromov, “Optimization of noise in the integration element of an LSI read circuit for the near IR and UV,” Prikl. Fiz. No. 4, 12–15 (2013).