УДК: 621.383
Use of adaptive integration time to improve the dynamic range of a focal plane array
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Дражников Б.Н., Козлов К.В., Кузнецов П.А., Хамидуллин К.А., Деомидов А.Д. Обеспечение расширенного динамического диапазона матричного фотоприемного устройства с помощью адаптивного времени накопления // Оптический журнал. 2016. Т. 83. № 9. С. 60–63.
Drazhnikov B.N., Kozlov K.V., Kuznetsov P.A., Khamidullin K.A., Deomidov A.D. Use of adaptive integration time to improve the dynamic range of a focal plane array [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 9. P. 60–63.
B. N. Drazhnikov, K. V. Kozlov, P. A. Kuznetsov, K. A. Khamidullin, and A. D. Deomidov, "Use of adaptive integration time to improve the dynamic range of a focal plane array," Journal of Optical Technology. 83(9), 556-558 (2016). https://doi.org/10.1364/JOT.83.000556
We provide a block diagram of an array element in a large-scale integrated photosignal read circuit with adaptive integration time (which, in this application, depends on the ambient light level). We propose a mathematical description of the light detection process using a focal-plane array with this type of large-scale integrated circuit. We demonstrate that if the focal-plane array transfer function is nonlinear (due to the additive integration time), this will expand the input-signal dynamic range to 130–140 dB. We conclude that a focal-plane array with a log-linear transfer function has a better signal-to-noise ratio (10%–30% higher, with low input current) than one with a logarithmic transfer function, with no degradation to the dynamic range. We provide equations to obtain the dynamic range and signal-to-noise ratio from the transfer function for a focal-plane array.
large-scale integrated circuit, adaptive integration time, photodetector array, dynamic range, transfer function
OCIS codes: 250.3140
References:1. E. Khamsehashari and Y. Audet, “Response mode detection of a linear-logarithmic image sensor using a current-mode readout circuit,” Sci. J. Circuits Syst. Signal Process. 2(1), 16–21 (2013).
2. X. Y. Qian, H. Yu, S. S. Chen, and K. S. Low, “An adaptive integration time CMOS image sensor with multiple readout channels,” IEEE Sens. J. 13(12), 4931–4939 (2013).
3. S. Vargas-Sierra, G. Liñán-Cembrano, and Á. Rodríguez-Vázquez, “A 151 dB high dynamic range CMOS image sensor chip architecture with tone mapping compression embedded in-pixel,” IEEE Sens. J. 15(1), 180–195 (2015).
4. J. M. Lloyd, Thermal Imaging Systems (Plenum, New York, 1975; Mir, Moscow, 1978), pp. 68–116.
5. A. M. Filachev, I. I. Taubkin, and M. A. Trishenkov, Solid-State Photoelectronic: Fundamental Physics (Fizmatkniga, Moscow, 2005), pp. 307–361.
6. P. A. Kuznetsov and S. S. Khromov, “Optimization of noise in the integration element of an LSI read circuit for the near IR and UV,” Prikl. Fiz. No. 4, 12–15 (2013).