ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 621.382, 621.383.5

Comparative analysis of specifications for HgCdTe photodiode-based infrared photodetectors and for GaAs/AlGaAs quantum-well photodetectors

For Russian citation (Opticheskii Zhurnal):

Демьяненко М.А., Козлов А.И., Овсюк В.Н. Аналитическое сравнение характеристик фотоприемников инфракрасного диапазона на основе фотодиодов HgCdTe и фотодетекторов GaAs/AlGaAs с квантовыми ямами // Оптический журнал. 2016. Т. 83. № 9. С. 64–71.

 

Demiyanenko M.A., Kozlov A.I., Ovsyuk V.N. Comparative analysis of specifications for HgCdTe photodiode-based infrared photodetectors and for GaAs/AlGaAs quantum-well photodetectors [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 9. P. 64–71.

For citation (Journal of Optical Technology):

M. A. Demyanko, A. I. Kozlov, and V. N. Ovsyuk, "Comparative analysis of specifications for HgCdTe photodiode-based infrared photodetectors and for GaAs/AlGaAs quantum-well photodetectors," Journal of Optical Technology. 83(9), 559-564 (2016). https://doi.org/10.1364/JOT.83.000559

Abstract:

We discuss the design characteristics of silicon-based signal multiplexers for multi-element infrared detectors using photodiodes based on the HgCdTe compound and GaAs/AlGaAs multi-layer quantum-well structures and compare their noise-equivalent temperature difference when using silicon-based multiplexers employing line-by-line and frame-by-frame signal accumulation of the photosensitive elements. We also investigate the noise-equivalent temperature difference for a variety of infrared detectors using these multiplexers as a function of a parameter computed by multiplying the zero-bias differential resistance of the photosensitive elements by the area of the photosensitive element, the array element size, the quantum efficiency, and the wavelength of peak sensitivity for the photosensitive elements. The research results obtained are then used to develop multiplexers for use in multi-element high-temperature-resolution photodetectors for the 8–14 μm and 3–5 μm spectral regions.

Keywords:

silicon-based multiplexer, photosignal readout circuit, multi-element infrared detector, HgCdTe photodiode, multi-layer quantum-well photodetector

Acknowledgements:

The authors thank A. L. Aseev for useful discussions regarding the research results presented in this paper.

OCIS codes: 040.3060, 110.3080, 130.5990

References:

1. V. S. Varavin, A. K. Gutakovskiı˘, S. A. Dvoretskiı˘, V. A. Kartashev, A. V. Latyshev, N. N. Mikhaı˘lov, D. N. Pridachin, V. G. Remesnik, S. V. Rykhlitskiı˘, I. V. Sabinina, Yu. T. Sidorov, V. P. Titov, V. A. Shvets, M. V. Yakushev, and A. L. Aseev, “Status and prospects for CdxHg1−xTe molecular beam epitaxy,” Prikl. Fiz. (6), 25–41 (2002).
2. A. Rogalskiı˘, Infrared Detectors (Nauka, Novosibirsk, 2003).
3. SOFRADIR products: Cooled IR Photodetectors, Official website, SOFRADIR Group, http://www.sofradir‑ec.com/products‑cooled.asp.
4. V. I. Stafeev, K. O. Boltar’, I. D. Burlakov, V. M. Akimov, E. A. Klimanov, L. D. Saginov, V. N. Solyakov, N. G. Mansvetov, V. P. Ponomarenko, A. A. Timofeev, and A. M. Filachev, “Mid- and far-IR focal plane arrays based on Hg1−xCdxTe photodiodes,” Semiconductors 39(10), 1257–1265 (2005).
5. E. Mottin, P. Pantigny, and R. Boch, “An improved architecture of IR FPA readout circuits,” Proc. SPIE 3061, 119–128 (1997).
6. A. I. Kozlov, I. V. Marchishin, V. N. Ovsyuk, and A. L. Aseev, “A series of silicon multiplexers for HgCdTe photodiodes of the 8–16-μm spectral range,” J. Opt. Technol. 75(3), 187–193 (2008) [Opt. Zh. 75(3), 60–67 (2008)].
7. A. I. Kozlov, I. V. Marchishin, and V. L. Ovsyuk, “320 × 256 silicon multiplexers for IR focal plane arrays based on MCT diodes,” Optoelectron. Instrum. Data Proc. 43(4), 351–357 (2007) [Avtometriya 43(4), 74–82 (2007)].
8. A. I. Kozlov and I. V. Marchishin, “Manufacturing-oriented developments of silicon multiplexers for multielement IR photodetectors,” Optoelectron. Instrum. Data Proc. 48(4), 373–383 (2012) [Avtometriya 48(4), 60–72 (2012)].
9. L. J. Kozlowski, R. B. Bailey, S. C. Cabelli, D. E. Cooper, G. McComas, K. Vural, and W. E. Tennant, “640 × 480 PACE HgCdTe FPA,” Proc. SPIE 1735, 163–174 (1992).
10. V. V. Vasiliev, A. I. Kozlov, I. V. Marchishin, Yu. G. Sidorov, and M. V. Yakushev, “Analysis of structural–technological limitations in silicon circuits for reading photodiode signals in the IR region,” J. Opt. Technol. 81(7), 392–396 (2014) [Opt. Zh 81(7), 39–45 (2014)].
11. M. A. Dem’yanenko, D. G. Esaev, A. I. Kozlov, I. V. Marchishin, and V. N. Ovsyuk, “Technological limitations in readout integrated circuits for infrared focal plane arrays based on quantum-well infrared photodetectors,” Optoelectron. Instrum. Data Proc. 51(2), 198–204 (2015) [Avtometriya 51(2), 110–118 (2015)].
12. A. I. Kozlov, I. V. Marchishin, and V. N. Ovsyuk, “Silicon multiplexers for 1 × 576 HgCdTe IR focal-plane arrays,” Russ. Microelectron. 37(4), 245–252 (2008) [Mikroelektronika 37(4), 278–286 (2008)].
13. A. I. Kozlov, I. V. Marchishin, V. L. Ovsyuk, and V. V. Filippova, “Standard silicon-based 128 × 128 multiplexers for infrared photodetector devices,” Avtometriya 42(4), 109–118 (2006).