ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 681.7.022.2, 621.7.073, 621.7.019.5, 621.7.08

Developing and modeling production processes for manufacturing polymeric optical items in a distributed integrated medium

For Russian citation (Opticheskii Zhurnal):

Яблочников Е.И., Пирогов А.В., Васильков С.Д., Андреев Ю.С., Демкович Н.А. Разработка и моделирование технологических процессов производства полимерных оптических изделий в распределенной интегрированной среде // Оптический журнал. 2017. Т. 84. № 1. С. 85–92.

 

Yablochnikov E.I., Pirogov A.V., Vasilkov S.D., Andreev Yu.S., Demkovich N.A. Developing and modeling production processes for manufacturing polymeric optical items in a distributed integrated medium [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 1. P. 85–92.

For citation (Journal of Optical Technology):

E. I. Yablochnikov, A. V. Pirogov, S. D. Vasil’kov, Yu. S. Andreev, and N. A. Demkovich, "Developing and modeling production processes for manufacturing polymeric optical items in a distributed integrated medium," Journal of Optical Technology. 84(1), 62-67 (2017). https://doi.org/10.1364/JOT.84.000062

Abstract:

This paper discusses an approach to the development and modeling of production processes for manufacturing items from polymeric optical materials. It describes the processes of computer-aided manufacturing in a distributed integrated medium based on a data-control system. The results of a study of how the design-and-production factors affect the optical properties of a lens are presented. The injection-molding process is studied by numerical methods in a computer-modeling program, as well as by experimental means. This paper describes how the factors associated with the gating design and the packing pressure affect the accuracy of the resulting optical item’s shape and the refractive index of the polymeric material, and how the material-supply rate into the mold affects linear shrinkage and birefringence. Testing the optical properties of the finished items confirmed that the resulting characteristics matched the requirements.

Keywords:

polymeric lense, distributed integrated medium, injection molding, computer engineering analysis, production parameters, optical properties

OCIS codes: 220.3630, 220.2740

References:

1. S. Bäumer, ed., Handbook of Plastic Optics (Wiley, New York, 2011).
2. T. Ossval’d, L. Sh. Tung, and P. D. Grémann, Injection Molding of Plastics, É. L. Kalinchev, ed. (Professiya, St. Petersburg, 2006).
3. M. P. Schaub, The Design of Plastic Optical Systems (SPIE Press, Bellingham, Wash., 2009).
4. Y. Yang, B. Yang, S. Zhu, and X. Chen, “Online quality optimization of the injection molding process via digital image processing and model-free optimization,” J. Mater. Process. Technol. 226, 85–98 (2015).
5. V. A. Valetov and K. P. Pompeev, Instrumentation Technology: A Textbook (NIU ITMO, St. Petersburg, 2013).
6. A. V. Boyarintsev, V. G. Duvidzon, and D. S. Podsoblyaev, “Rapid fabrication of pilot series of items made from thermoplastic polymeric materials,” Polimer. Mater. (6), 4–9 (2013).
7. E. I. Yablochnikov, A. S. Vosorkin, and A. V. Tsupikov, “Integrated system for developing items made from polymeric composite materials based on PLM methodology,” Program. Prod. Sist. 2(106), 100–104 (2014).
8. D. Wu, D. W. Rosen, L. Wang, and D. Schaefer, “Cloud-based design and manufacturing: a new paradigm in digital manufacturing and design innovation,” Comput.-Aided Des. 59, 1–14 (2015).
9. M. Koch, S. Sturm, and M. Düngen, Innovationsfelder der Kunststofftechnik. Roadmap für die Thüringer Kunststoffverarbeitungsindustrie (TU Ilmenau, 2011).
10. T. Bangemann, S. Karnouskos, J. Delsing, P. Stluka, and R. Harrison, Industrial Cloud-Based Cyber-Physical Systems (Springer International Publishing, 2014).
11. E. I. Yablochnikov, S. D. Vasilkov, Y. S. Andreev, A. V. Pirogov, and S. D. Tretyakov, “An integrated approach to development and simulation manufacturing processes of optical products,” Manag. Prod. Eng. Rev. 6(4), 94–103 (2015).
12. A. Mazzoli, P. Saint-Georges, A. Orban, J.-S. Ruess, J. Loicq, C. Barbier, Y. Stockman, M. Georges, P. Nachtergaele, S. Paquay, and P. Vincenzo, “Experimental validation of opto-thermo-elastic modeling in OOFELIE Multiphysics,” Proc. SPIE 8167, 81671I (2011).
13. E. I. Yablochnikov, A. A. Gribovski, and A. V. Pirogov, “The effectiveness of using additive processes to fabricate mold forms and in preparing the production of items made from thermoplastic polymeric materials,” Metalloobrabotka 5–6(77–78), 74–80 (2013).

14. W. C. Lo, K. M. Tsai, and C. Y. Hsieh, “Six-Sigma approach to improve surface precision of optical lenses in the injection-molding process,” Int. J. Adv. Manuf. Technol. 41(9–10), 885–896 (2009).
15. S. Powell and D. Fisher, “Polymer optics gain increased precision,” Laser Focus World 43(6), 111–117 (2007).
16. B. Bergman, ed., Robust Design Methodology for Reliability: Exploring the Effects of Variation and Uncertainty (John Wiley & Sons, 2009).
17. D. C. Montgomery, Design and Analysis of Experiments (Wiley, 2012).
18. E. I. Yablochnikov, A. V. Pirogov, S. D. Vasilkov, Y. S. Andreev, and I. A. Barvinsky, “Studies of design and technology influence on optical properties of injection molding parts by simulation,” in Proceedings of the 58th Ilmenau Scientific Colloquium, Technische Universität Ilmenau, 2014, pp. 1–12.
19. A. Ya. Malkin and A. I. Isaev, Rheology: Concepts, Methods, Applications (Professiya, St. Petersburg, 2007).
20. M. J. Gordon, Six-Sigma QUALITY for Business & Manufacture (Elsevier, Amsterdam, 2002; Nauchnye Osnovy i Tekhnologii, St. Petersburg, 2012).
21. A. V. Pirogov, S. D. Vasil’kov, and V. P. Savchenko, “Quality control of optical items made from thermoplastic polymeric materials,” Izv. Vyssh. Uchebn. Zaved. Prib. 57(8), 61–64 (2014).