Ber performance analysis of M-ary PPM over exponentiated Weibull distribution for airborne laser communications
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Jing Zhao, Shang-hong Zhao, Wei-hu Zhao, Jiyu Cai, Yun Liu, Xuan Li Ber performance analysis of M-ary PPM over exponentiated Weibull distribution for airborne laser communications (Анализ частоты появления ошибочных битов на основе потенцированного распределения Вейбулла для М-арной фазово-импульсной модуляции применительно к лазерным воздушным коммуникационным системам) [на англ. яз.] // Оптический журнал. 2017. Т. 84. № 10. С. 12–18.
Jing Zhao, Shang-hong Zhao, Wei-hu Zhao, Jiyu Cai, Yun Liu, Xuan Li Ber performance analysis of M-ary PPM over exponentiated Weibull distribution for airborne laser communications (Анализ частоты появления ошибочных битов на основе потенцированного распределения Вейбулла для М-арной фазово-импульсной модуляции применительно к лазерным воздушным коммуникационным системам) [in English] // Opticheskii Zhurnal. 2017. V. 84. № 10. P. 12–18.
Jing Zhao, Shang-hong Zhao, Wei-hu Zhao, Jiyu Cai, Yun Liu, and Xuan Li, "BER performance analysis of M-ary PPM over exponentiated Weibull distribution for airborne laser communications," Journal of Optical Technology. 84(10), 658-663 (2017). https://doi.org/10.1364/JOT.84.000658
Airborne optical communication systems have been widely used for high-speed data transmission. In this paper, the average bit error rate (BER) of M-ary pulse position modulation (PPM) of airborne optical communication systems is analyzed under the combined influence of atmospheric turbulence and aerooptic effects. The atmospheric turbulence is modeled by the Exponentiated Weibull (EW) distribution that can accurately describe the probability density function distribution of the irradiance under weak to strong condition in the presence of aperture averaging. Next, we use our derived form to study the effect of atmospheric conditions, operating wavelength and modulation level on the system performance. Moreover, the BER performance is analyzed for different aperture sizes of the receiver as well. Results suggest that the aperture averaging technique can significantly improve the system performance in turbulence and aero-optics effects. Furthermore, this work is helpful for the compensate technique of system performance on airborne optical communication system.
airborne optical communication; atmospheric turbulence; aero-optic effect; intensity scintillation
OCIS codes: 200.2605, 200.3050, 200.3760
References:1. Stotts L.B., Stadler B., Lee G. Free space optical communications: coming of age // Proceeding of SPIE. 2008. 69510W.
2. Stotts L.B., Andrews L.C. Hybrid optical RF airborne communications // Proceeding of IEEE. 2009. V. 97. P. 1109–1127.
3. Stotts L.B., Stadler B., Northcott M. Optical RF communications adjunct // Proceeding of SPIE. 2008. V. 7091. P. 709102–709102-17.
4. Jumper E.J., Fitzgerald E.J. Recent advances in aero-optics // Progress in Aerospace Sciences. 2001. V. 37. P. 299–339.
5. Vetelino F.S., Young C., Andrews A. Fade statistics and aperture averaging for Gaussian beam waves in moderate-tostrong turbulence // Applied Optics. 2007. V. 46. P. 3780–3790.
6. Perlot N., Fritzsche D. Aperture-averaging: theory and measurements // Proceeding of SPIE. 2004. V. 5338. P. 233–242.
7. Kamran Kiasaleh. Performance of APD-Based, PPM Free-Space Optical Communication Systems in Atmospheric Turbulence // EEE Transactions on Communications. 2005. V 53. P. 1455–1461.
8. Gappmair W., Muhammad S.S. Error performance of terrestrial FSO links modelled as PPM/Poisson channels in turbulent atmosphere // Electronics Letters. 2007. V. 43. № 5. P. 302–304.
9. Yi X., Liu Z., Yue P., Shang T. BER performance analysis for M-ary PPM over gamma-gamma atmospheric turbulence channels // International Conference on Wireless Communications Networking and Mobile Computing. 2010. P. 1–4.
10. Beland R.R. Propagation through Atmospheric Optical Turbulence // Atmospheric Propagation of Radiation. 1993. V. 2. P. 157–232.
11. Jacob J., Macdonald T., Walther F. Airborne laser communications: the challenges of the propagation medium // IEEE MILCOM. 2006. P. 1–6.
12. Andrews L.C., Philips R.L., Hopen C.Y. Laser beam scintillation with applications // SPIE press. 2001. V. 90. P. 149–155.
13. Wayne D.T., Philips R.L., Andrews L.C. Observation and analysis of Aero-optic effects on the ORCA laser Communication system // Proceeding of SPIE. 2004 .V. 8038. P. 80380A.
14. Andrews L.C., Philips R.L. Laser beam propagation through random media // SPIE press. 2005. V. 1. P. 179–185.
15. Philips R.L., Andrews L.C. FSO communications: atmospheric effects for an airborne backbone // Proceeding of SPIE. 2008. V. 6951. P. 695102-695102–11.
16. Polishuk A., Arnon S. Optimization of a laser satellite communication system with an optical preamplifier // Journal of the Optical Society of America. A. 2004. V. 21. P. 1307–1315.
17. Barrios R., Dios F. Exponentiated Weibull model for the irradiance probability density function of a laser beam propagating through atmospheric turbulence // Optics & Laser Technology. 2012. V. 45. № 1. P. 13–20.
18. Prudnikov A.P., Brychkov Yu.A., Marichev O.I. More special functions // Integrals and Series. 1990. V. 3. P. 800.