ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 621.373.826, 535.417.2, 535.31

Optimization of a Cr:ZnSe laser with a z-fold cavity

For Russian citation (Opticheskii Zhurnal):

Мартынова О.В., Курашкин С.В., Зиновьев А.П., Савикин А.П. Оптимизация Cr:ZnSe-лазера c z-образным резонатором // Оптический журнал. 2017. Т. 84. № 10. С. 19–24.

 

Martynova O.V., Kurashkin S.V., Zinoviev A.P., Savikin A.P. Optimization of a Cr:ZnSe laser with a z-fold cavity [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 10. P. 19–24.

For citation (Journal of Optical Technology):

O. V. Martynova, S. V. Kurashkin, A. P. Zinoviev, and A. P. Savikin, "Optimization of a Cr:ZnSe laser with a z-fold cavity," Journal of Optical Technology. 84(10), 664-668 (2017). https://doi.org/10.1364/JOT.84.000664

Abstract:

We have performed an experimental study of the lasing properties of a Cr2+:ZnSe laser with a four-mirror z-shaped cavity pumped by a thulium fiber-optic CW laser. The laser output power was determined as a function of the optical path deviation angles, the distance between the spherical mirrors, and the total cavity length. We compared the data obtained against the results of cavity stability modeling.

Keywords:

mid-infrared laser sources, optical resonator, z-fold cavity, chalcogenides, Cr:ZnSe, matrix optics method

Acknowledgements:

The research was supported by the Russian Science Foundation (RSF) (15-13-10028, 14-12-00510).

OCIS codes: 140.3410, 140.4780, 140.3070, 140.3580

References:

1. H. Cankaya, M. N. Cizmeciyan, E. Beyatlı, A. T. Gorgulu, A. Kurt, and A. Sennaroglu, “Injection-seeded, gain-switched tunable Cr:ZnSe laser,” Opt. Lett. 37(2), 136–138 (2012).
2. J. Goodberlet, P. Schulz, J. Wang, and J. Fujimoto, “Femtosecond passively mode-locked Ti:Al 2 O 3 laser with a nonlinear external cavity,” Opt. Lett. 14(20), 1125–1127 (1989).
3. S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 133, 268–275 (2013).
4. A. Sennaroglu, U. Demirbas, H. Cankaya, N. Cizmeciyan, A. Kurt, and M. Somer, “Chromium-doped zinc selenide gain media: from synthesis to pulsed mid-infrared laser operation,” Proc. SPIE 7598, 75981B (2010).
5. I. T. Sorokina, “Cr2+-doped II-VI materials for lasers and nonlinear optics,” Opt. Mater. 26, 395–412 (2004).
6. Yu. V. Bogdanov and V. N. Sorokin, “Optimization of a four-mirror cavity for a titanium laser,” Quantum Electron. 25(4), 331–336 (1995) [Kvant. Élektron. 22(4), 350–356 (1995)].
7. V. P. Bykov and O. O. Silichev, Laser Resonators (Cambridge International Science Publishers, Cambridge, 1995; Fizmatlit, Moscow, 2004).
8. S. Yefet and A. Pe’er, “A review of cavity design for Kerr lens mode-locked solid-state lasers,” Appl. Sci. 3, 694–724 (2013).
9. H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8(3), 373–379 (1972).
10. D. M. Kane, “Astigmatism compensation in off-axis laser resonators with two or more coupled foci,” Opt. Commun. 71(3–4), 113–118 (1989).
11. X. G. Huang, W. K. Lee, S. P. Wong, J. Y. Zhou, and Z. X. Yu, “Effects of thermal lensing on stability and astigmatic compensation of a Z-fold laser cavity,” J. Opt. Soc. Am. B 13(12), 2863–2868 (1996).
12. Q. Wen, G. Liang, X. Zhang, Z. Liang, Y. Wang, J. Li, and H. Niu, “Exact analytical solution for the mutual compensation of astigmatism using curved mirrors in a folded resonator laser,” IEEE Photonics J. 6(6), 1–13 (2014).
13. A. Gerrard and J. M. Burch, Introduction to Matrix Optics (Wiley, London, 1975; Mir, Moscow, 1978).
14. P. G. Kryukov, “Ultrashort-pulse lasers,” Quantum Electron. 31(2), 95–119 (2001) [Kvant. Élektron. 31(2), 95–119 (2001)].