ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 528.8, 536.33

Calculation of the effect of earthshine and solar radiation on radiation-panel performance for space-based telescopes

For Russian citation (Opticheskii Zhurnal):

Дзитоев А.М., Лаповок Е.В., Пеньков М.М., Ханков С.И. Расчёт влияния излучения Земли и Солнца на работу радиационных панелей космического телескопа // Оптический журнал. 2017. Т. 84. № 10. С. 48–55.

 

Dzitoev A.M., Lapovok E.V., Penkov M.M., Khankov S.I. Calculation of the effect of earthshine and solar radiation on radiation-panel performance for space-based telescopes [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 10. P. 48–55.

For citation (Journal of Optical Technology):

A. M. Dzitoev, E. V. Lapovok, M. M. Pen’kov, and S. I. Khankov, "Calculation of the effect of earthshine and solar radiation on radiation-panel performance for space-based telescopes," Journal of Optical Technology. 84(10), 688-693 (2017). https://doi.org/10.1364/JOT.84.000688

Abstract:

We have developed a method for choosing the parameters of a temperature control unit (TCU) for a space-based telescope in which the TCU is based on a radiation panel-electric heater system; this method takes into account the overall energy balance in circumterrestrial space and enables a more accurate determination of the required thermal output power of the electric heater as a function of radiation panel orientation in space relative to the Earth and Sun. We discuss the feasibility of replacing the laminar radiation panels by creating cut-outs in the layers of vacuum sandwich insulation to the depth of the telescope housing. We show that the telescope housing can be stabilized at a specific temperature level through absorption of solar radiation by the surface of the radiation panel.

Keywords:

space object, radiation panel, radiation coefficient, thermal mode, radiation heat exchange, earthshine

OCIS codes: 010.5620, 120.4820, 120.6780, 350.6090

References:

1. B. Cullimore, T. Panczak, J. Baumann, V. Genberg, and M. Kahan, “Automated multidisciplinary optimization of a space-based telescope,” SAE Technical Paper, 2002.
2. G. J. Michels and V. L. Genberg, “Design optimization of actively controlled optics,” Proc. SPIE 4198, 17 (2000).
3. K. B. Doyle, V. L. Genberg, and G. J. Michels, “Integrated optomechanical analysis of adaptive optical systems,” Proc. SPIE 5178, 21 (2003).
4. V. L. Genberg and G. J. Michels, “Opto-mechanical analysis of segmented/adaptive optics,” Proc. SPIE 4444, 90–101 (2001).
5. V. L. Genberg, G. J. Michels, and K. B. Doyle, “Making FEA results useful in optical analysis,” Proc. SPIE 4769, 24 (2002).
6. J. W. Pepi, “Analytical predictions for lightweight optics in a gravitational and thermal environment,” Proc. SPIE 0789, 172–179 (1987).
7. D. K. Vinokurov, G. V. Kukina, G. S. Mishin, and Yu. S. Pronin, “A study of the thermal control conditions for an infrared radiometer and determination of temperature control system parameters,” Kosmonavt. Raketostr. 3(44), 137–143 (2006).
8. V. A. Danilov, A. I. Lysenko, E. R. Malamed, and M. N. Sokol’skiı˘, “Service systems of space telescopes,” J. Opt. Technol. 69(9), 632–639 (2002) [Opt. Zh. 69(9), 36–44 (2002)].
9. G. M. Salakhutdinov, Thermal Protection in Space Technology (Znanie, Moscow, 1982) [translation of version published in Novoye v Zhizni, Nauke, Tekhn. Ser. Kosmonavtika, Astron. (Moscow) (7), 1–58 (1982) available as NASA TM 77145, Thermal Protection in Space Technology].
10. G. N. Dul’nev, G. I. Tsukanova, and E. D. Ushakovskaya, “Thermooptical processes in mirror-lens objectives. II. Stepwise modeling of thermooptical processes,” J. Eng. Phys. (N.Y.) 53(1), 821–825 (1987) [Inzh.-Fiz. Zh. 53(1), 101–106 (1987)].
11. H. I. Abdussamatov, E. V. Lapovok, and S. I. Khankov, Methods of Thermally Stabilizing the Space Telescope—Solar Limbograph (Izd. Sankt-Petersburg Politekh. Univ., St. Petersburg, 2008).
12. H. I. Abdussamatov, E. V. Lapovok, and S. I. Khankov, “The thermal regime of the special space-based lunar telescope STL-200 for monitoring variations of the global albedo of the earth from the earthshine of the moon,” J. Opt. Technol. 81(7), 382–387 (2014) [Opt. Zh. 81(7), 26–33 (2014)].
13. Kh. I. Abdusamatov, A. I. Bogoyavlenskiı˘, E. V. Lapovok, and S. I. Khankov, “Studying the thermal stability of a reflective-telescope–solar-limbograph in the regime of continuous observation of the sun,” J. Opt. Technol. 76(5), 289–295 (2009) [Opt. Zh. 76(5), 51–59 (2009)].
14. Yu. V. Baeva, E. V. Lapovok, and S. I. Khankov, “Longitudinal thermooptical aberration of the image in reflective telescopes,” J. Opt. Technol. 80(3), 148–153 (2013) [Opt. Zh. 80(3), 30–36 (2013)].
15. Y. Bayova, Y. Lapovok, and S. Khankov, “Analytical technique for calculating the heat fluxes in near-earth space that form the thermal regime of space telescopes,” J. Opt. Technol. 80(5), 283–288 (2013) [Opt. Zh. 80(5), 30–37 (2013)].
16. A. M. Dzitoev and S. I. Khankov, “Method for calculation of radiation coefficients for a cylindrical object in space illuminated by the Earth,” Nauchno-Tekh. Vestn. Inf. Tekhnol. Mekh. Opt. 1(89), 145–150 (2014).
17. A. M. Dzitoev, E. V. Lapovok, and S. I. Khankov, “Temperature of isothermal spherical object in space as a function of altitude,” Nauchno-Tekh. Vestn. Inf. Tekhnol. Mekh. Opt. 3(91), 119–125 (2014).
18. A. M. Dzitoev, E. V. Lapovok, and S. I. Khankov, “Method for closed-form calculation of the variations in the temperature of a spherical object in space as it moves along a polar elliptical orbit,” Tr. Voen.-Kosm. Akad. A. F. Mozhaı˘skogo 2(643), 98–106 (2014).
19. A. M. Dzitoev, E. V. Lapovok, and S. I. Khankov, “Temperature as a function of altitude for bodies in space with various standard configurations,” Nauchn. Obozr. (6), 144–153 (2015).
20. A. M. Dzitoev and S. I. Khankov, “Technique for recognizing space objects of flat and convex shape from their thermal self-radiation in the earth’s shadow,” J. Opt. Technol. 82(4), 220–226 (2015) [Opt. Zh. 82(4), 32–40 (2015)].
21. Yu. V. Baeva and S. I. Khankov, “Earth-remote-sensing telescope housing temperature as a function of altitude, including thermal effects from the spacecraft,” Vopr. Radioelektron. Ser. Tekh. Telev. (1), 60–68 (2014).
22. A. A. Kamenev, E. V. Lapovok, and S. I. Khankov, Techniques for Closed-Form Calculation of the Thermal Characteristics of Intrinsic Emission from Objects in Circumterrestrial Space (NTTs im. L.T. Tuchkova, Saint Petersburg, 2006).
23. K. E. Trenberth, J. T. Fasullo, and J. Kiehl, “Earth’s global energy budget,” Bull. Am. Meteorol. Soc. 90, 311–323 (2009).
24. H. Y. Wong, Handbook of Essential Formulae and Data on Heat Transfer for Engineers (Longman, London/New York, 1977; Atomizdat, Moscow, 1979).