ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 681.7.063

Inscription of superimposed fiber Bragg gratings using a Talbot interferometer

For Russian citation (Opticheskii Zhurnal):

Идрисов Р.Ф., Грибаев А.И., Стам А.М., Варжель С.В., Сложеникина Ю.И., Коннов К.А. Запись суперпозиций волоконных решёток Брэгга с использованием интерферометра Тальбота // Оптический журнал. 2017. Т. 84. № 10. С. 56–60.

 

Idrisov R.F., Gribaev A.I., Stam A.M., Varzhel S.V., Slozhenikina Yu.I., Konnov K.A. Inscription of superimposed fiber Bragg gratings using a Talbot interferometer [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 10. P. 56–60.

For citation (Journal of Optical Technology):

R. F. Idrisov, A. I. Gribaev, A. M. Stam, S. V. Varzhel’, Yu. I. Slozhenikina, and K. A. Konnov, "Inscription of superimposed fiber Bragg gratings using a Talbot interferometer," Journal of Optical Technology. 84(10), 694-697 (2017). https://doi.org/10.1364/JOT.84.000694

Abstract:

In this paper, we present results on the inscription of superimposed Bragg gratings in various optical fibers, including specialized light guides produced in Russia, using an inscription setup based on the Talbot interferometer. A KrF excimer laser system of the master oscillator type—an Optosystems CL-7550 power amplifier—is used as the source of ultraviolet radiation for the experimental stand. The spectral characteristics of superimposing a different number of fiber Bragg gratings are demonstrated and the inscription of several Bragg gratings in the same region of the optical fiber is investigated.

Keywords:

fiber Bragg grating, Talbot interferometer, superposition, photosensitivity, excimer laser

Acknowledgements:

The research was supported by the Ministry of Education and Science of the Russian Federation (Minobrnauka) (RFMEFI57815X0109, 14.578.21.0109).

OCIS codes: 060.3735; 060.3738; 230.1950

References:

1. S. A. Vasil’ev, O. I. Medvedkov, I. G. Korolev, A. S. Bozhkov, A. S. Kurkov, and E. M. Dianov, “Fibre gratings and their applications,” Quantum Electron. 35(12), 1085–1103 (2005).
2. A. Othonos, X. Lee, and R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30(23), 1972–1974 (1994).
3. P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H 2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO 2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
4. C. R. Dennison and P. M. Wild, “Superstructured fiber-optic contact force sensor with minimal cosensitivity to temperature and axial strain,” Appl. Opt. 51(9), 1188–1197 (2012).
5. A. Arigiris, M. Konstantaki, A. Ikiades, D. Chronis, P. Florias, K. Kallimani, and G. Pagiatakis, “Fabrication of high-reflectivity superimposed multiple-fiber Bragg gratings with unequal wavelength spacing,” Opt. Lett. 27(15), 1306–1308 (2002).
6. P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos, and D. J. Richardson, “A 4-channel WDM/OCDMA system incorporating 255-chip, 320 Gchip/s quaternary phase coding and decoding gratings,” in Optical Fiber Communication Conference and International Conference on Quantum Information, 2001, paper PD37.D.
7. G. Brochu, S. LaRochelle, and R. Slavík, “Modeling and experimental demonstration of ultracompact multiwavelength distributed Fabry–Pérot fiber lasers,” J. Lightwave Technol. 23(1), 44–53 (2005).
8. V. García-Muñoz, M. A. Preciado, and M. A. Muriel, “Simultaneous ultrafast optical pulse train bursts generation and shaping based on Fourier series developments using superimposed fiber Bragg gratings,” Opt. Express 15(17), 10878–10889 (2007).
9. I. Abe, H. J. Kalinowski, O. Frazao, J. L. Santos, R. N. Nogueira, and J. L. Pinto, “Superimposed Bragg gratings in high-birefringence fibre optics: three-parameter simultaneous measurements,” Meas. Sci. Technol. 15, 1453–1457 (2004).
10. V. Garcia-Muñoz, C. Caucheteur, S. Bette, M. Wuilpart, M. A. Muriel, and P. Mégret, “Reduction of polarization related effects in superimposed fiber Bragg gratings,” Appl. Opt. 48(9), 1635–1641 (2009).
11. X. Dong, P. Shum, M. Q. Ngo, and C. C. Chan, “Multiwavelength Raman fiber laser with a continuously-tunable spacing,” Opt. Express 14(8), 3288–3293 (2006).
12. V. V. Atezhev, S. K. Vartapetov, A. N. Zhukov, M. A. Kurzanov, and A. Z. Obidin, “Excimer laser with highly coherent radiation,” Quantum Electron. 33(8), 689–694 (2003).
13. A. I. Gribaev, I. V. Pavlishin, A. M. Stam, R. E. Idrisov, S. V. Varzhel, and K. A. Konnov, “Laboratory setup for fiber Bragg gratings inscription based on Talbot interferometer,” Opt. Quantum Electron. 48(12), 1–7 (2016).
14. L. Xu, T. Wang, A. Chowdhury, J. Yu, G. Chang, K. Fukuchi, and T. Ito, “Spectral efficient transmission of 40 Gbps per channel over 50 GHz spaced DWDM systems using optical carrier suppression, separation and optical duobinary modulation,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, 2006, paper NTuC2.
15. S. V. Varzhel’, A. S. Mun’ko, K. A. Konnov, A. I. Gribaev, and A. V. Kulikov, “Recording Bragg gratings in hydrogenated birefringent optical fiber with elliptical stress cladding,” J. Opt. Technol. 83(10), 638–641 (2016) [Opt. Zh. 83(10), 74–78 (2016)].
16. M. E. Efimov, M. Yu. Plotnikov, and A. V. Kulikov, “Modeling and experimental investigation of the sensing element of a fiber-optic hydrophone,” Nauchno-Tekh. Vestn. Inf. Tekhnol. Mekh. Opt. 14(5), 158–163 (2014).
17. M. A. Eron’yan, “Method for manufacturing optical light guides that preserve the polarization of radiation,” Russian patent 2155359 (2000).
18. S. V. Bureev, K. V. Dukel’skiı˘, M. A. Eron’yan, A. V. Komarov, L. G. Levit, A. V. Khokhlov, P. A. Zlobin, and V. I. Strakhov, “Processing large blanks of anisotropic single-mode lightguides with elliptical cladding,” J. Opt. Technol. 74(4), 297–298 (2007) [Opt. Zh. 74(4), 85–87 (2007)].
19. K. V. Dukel’skiı˘, S. V. Bureev, M. A. Bisyarin, I. K. Meshkovskiı˘, M. A. Eron’yan, A. V. Komarov, E. Yu. Utkin, E. I. Romashova, and M. M. Serkov, “Minimizing the optical losses in anisotropic single-mode light-guides with elliptical boron germanosilicate cladding,” J. Opt. Technol. 79(7), 433–436 (2012) [Opt. Zh. 79(7), 70–74 (2012)].
20. I. K. Meshkovskii, V. Ye. Strigalev, G. B. Deineka, V. G. Peshekhonov, D. V. Volynskii, and A. A. Untilov, “Three axis fiber optic gyroscope: development and test results,” Gyrosc. Navig. 2(4), 208–213 (2011).
21. I. K. Meshkovskiy, V. E. Strigalev, A. V. Kulikov, and S. V. Varzhel’, “Bragg gratings induced in birefringent optical fiber with an elliptical stress cladding,” J. Photon. 2013, 1–4 (2013).