УДК: 635.15
Silver halide fiber lightguides for laser medicine
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Корсаков В.С., Фасхиев В.Н., Корсаков М.С., Жукова Л.В. Галогенидсеребряные волоконные световоды для лазерной медицины // Оптический журнал. 2017. Т. 84. № 10. С. 64–68.
Korsakov V.S., Faskhiev V.N., Korsakov M.S., Zhukova L.V. Silver halide fiber lightguides for laser medicine [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 10. P. 64–68.
V. S. Korsakov, V. N. Faskhiev, M. S. Korsakov, and L. V. Zhukova, "Silver halide fiber lightguides for laser medicine," Journal of Optical Technology. 84(10), 701-704 (2017). https://doi.org/10.1364/JOT.84.000701
The authors have developed single-mode IR optical fibers, including some with photonic-crystal structure intended to increase the field diameter of the lightguide mode, for use in laser medicine in order to transmit radiation from CO2 and ZnSe:Fe lasers. To simplify the production process, a method is used of modeling the fiber structure and its modal content. A study has been made of how the sterilization and disinfection regimes affect the optical properties of the resulting fibers, in order to create interchangeable, easily spliced fiber-optic components for laser-medicine equipment at a wavelength of 10.6 μm.
laser medicine, optical fiber, infrared band
OCIS codes: 170.0170
References:1. A. M. Shulutko, A. A. Ovchinnikov, O. O. Yasnogorodskiı˘, and I. Ya. Motus, Endoscopic Thoracic Surgery (Meditsina, Moscow, 2006).
2. A. Chazov, A. Korsakov, L. Zhukova, D. Vrublevsky, V. Zhukov, and S. Kortov, “Modeling and experimental research of nano- and microstructurized IR fibers (2–40 μm) based on defective crystals,” in Advanced Photonics Congress, OSA Technical Digest, Colorado Springs, Colorado, USA, 17–21 June 2012, paper STu3F.3.
3. A. Hochman and Y. Leviatan, “Analysis of strictly bound modes in photonic fibers by use of a source-model technique,” J. Opt. Soc. Am. A 21(6), 1073–1081 (2004).
4. A. Hochman and Y. Leviatan, “Calculation of confinement losses in photonic crystal fibers by use of a source-model technique,” J. Opt. Soc. Am. B 22(2), 474–480 (2005).
5. A. Korsakov, D. Vrublevsky, and L. Zhukova, “Measuring spectral transmission and refractive index of AgCl 1-xBrx (0 ≤ x ≤ 1) and Ag1-xTlxBr 1-xIx (0 ≤ x ≤ 0.05) at the wavelength of 10.6 μm,” Opt. Mater. 50(B), 204–207 (2015).
6. V. I. Kozlovsky, Y. V. Korostelin, A. I. Landman, V. V. Mislavskii, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Pulsed Fe2+ :ZnS laser continuously tunable in the wavelength range of 3.49–4.65 μm,” Quantum Electron. 41(1), 1 (2011) [Kvant. Elektron. (Moscow) 41(1), 1 (2011)].
7. A. S. Korsakov, V. S. Korsakov, and L. V. Zhukova, “Infrared light-guide with a large diameter of the mode field,” Application for Russian patent No. 2016121385 (30 May 2016).
8. OST 42-21-2-85, “Sterilization and disinfection of items for medical purposes: methods, facilities, and regimes,” 10 June 1985.
9. MU–287–113, “Methodological indications for the disinfection, presterilization cleaning, and sterilization of items for medical purposes,” 30 December 1998.
10. L. V. Zhukova, A. S. Korsakov, and D. D. Salimgareev, Infrared Crystals: Theory and Practice (UMTs UPI, Ekaterinburg, 2015).
11. A. Korsakov, L. Zhukova, D. Vrublevsky, and E. Korsakova, “Investigating the properties of infrared PCFs based on AgCl–AgBr, AgBr–TlI, AgCl–AgBr–AgI(TlI) crystals theoretically and experimentally,” Opt. Spectrosc. 117(6), 960–963 (2014) [Opt. Spektrosk. 117(6), 987–991 (2014)].
12. A. S. Korsakov, L. V. Zhukova, E. A. Korsakova, V. V. Zhukov, and V. S. Korsakov, “Thermodynamic study of the crystals of the AgBr–TlI system and the production of IR lightguides of nanocrystalline structure based on them,” Tsvetn. Met. (4), 62–66 (2013).