УДК: 538.958, 538.971, 539.21
Infrared spectroscopic study to determine thermal resistance of the functionalized surface of a detonation nanodiamond
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Романов Н.М., Осипов В.Ю., Takai K., Touhara H., Hattori Y. Исследование терморезистентности функционализированной поверхности детонационного наноалмаза методом инфракрасной спектроскопии // Оптический журнал. 2017. Т. 84. № 10. С. 7–11.
Romanov N.M., Osipov V.Yu., Takai K., Touhara H., Hattori Y. Infrared spectroscopic study to determine thermal resistance of the functionalized surface of a detonation nanodiamond [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 10. P. 7–11.
N. M. Romanov, V. Yu. Osipov, K. Takai, H. Touhara, and Y. Hattori, "Infrared spectroscopic study to determine thermal resistance of the functionalized surface of a detonation nanodiamond," Journal of Optical Technology. 84(10), 654-657 (2017). https://doi.org/10.1364/JOT.84.000654
Infrared spectroscopy was used to analyze detonation nanodiamond powder with surfaces functionalized by fluorine- or oxygen-bearing groups before and after heat treatment in air. Fluorination at T=500°C has a significant effect on the actual condition of the diamond surface. The infrared absorption bands associated with the fluorocarbon groups occur at 1092, 1156, 1248, and 1340 cm−1. We show that heat treatment does not have any qualitative effect on the broad infrared absorption band between 1000 and 1400 cm−1 characterizing the fluorinated surface when the sample is heat treated at temperatures up to 520°C. This can be attributed to the entire surface of the detonation nanodiamond particles being covered by saturated, strong, covalent C–F bonds arising from the use of an element more electronegative than oxygen.
infrared spectroscopy, nanodiamond, fluorination, chemical oxidation, gas-phase etching, thermal resistance
Acknowledgements:The authors thank A. Ya. Vul’ (Ioffe Engineering Physics Institute) and I. B. Zakharov (Saint-Petersburg State Polytechnical Institute) for their consultations regarding this paper.
Prof. Takai Kazuyuki thanks Japan Society for the Promotion of Science (JSPS) (16K05758, 26107532) for support.
The authors also thank Russian Fund for Basic Research (17-52-50004YaF_a) and international research programm JSPS-RFBR for support.
OCIS codes: 300.6340, 160.4236, 350.4990, 300.6520
References:1. A. Vul’ and O. A. Shenderova, eds., Detonation Nanodiamonds: Science and Applications (Pan Stanford, Singapore, 2014).
2. V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotechnol. 7, 11–23 (2012).
3. H. Man, J. Sasine, E. K. Chow, and D. Ho, “Nanodiamonds for drug delivery and diagnostics,” in Nanodiamond (Royal Society of Chemistry, 2014), pp. 151–169.
4. V. Khabashesku, J. Margrave, and E. Barrera, “Functionalized carbon nanotubes and nanodiamonds for engineering and biomedical applications,” Diamond Relat. Mater. 14, 859–866 (2005).
5. V. N. Khabashesku, Y. Liu, and J. L. Margrave, “Functionalization of nanodiamond powder through fluorination and subsequent derivatization reactions,” US patent 7,820,130 (2010).
6. Y. Liu, Z. Gu, J. L. Margrave, and V. N. Khabashesku, “Functionalization of nanoscale diamond powder: fluoro-, alkyl-, amino-, and amino acid-nanodiamond derivatives,” Chem. Mater. 16, 3924–3930 (2004).
7. T. Ando, K. Yamamoto, M. Matsuzawa, Y. Takamatsu, S. Kawasaki, F. Okino, H. Touhara, M. Kamo, and Y. Sato, “Direct interaction of elemental fluorine with diamond surfaces,” Diamond Relat. Mater. 5(9), 1021–1025 (1996).
8. M. Dubois, K. Guérin, N. Batisse, E. Petit, A. Hamwi, N. Komatsu, H. Kharbache, P. Pirotte, and F. Masin, “Solid state NMR study of nanodiamond surface chemistry,” Solid State Nucl. Magn. Reson. 40, 144–154 (2011).
9. T. Nakamura, T. Ohana, M. Hasegawa, K. Tsugawa, M. Suzuki, M. Ishihara, A. Tanaka, and Y. Koga, “Chemical modification of diamond surfaces with fluorine-containing functionalities,” New Diamond Front. Carbon Technol. 15, 313 (2005).
10. V. Yu. Osipov and N. M. Romanov, “Infrared absorption of diamond nanoparticles with a surface modified by complexes of nitrate ions,” J. Opt. Technol. 84(5), 285–288 (2017) [Opt. Zh. 84(5), 1–5 (2017)].
11. Y. Wang, H. Huang, J. Zang, F. Meng, L. Dong, and J. Su, “Electrochemical behavior of fluorinated and aminated nanodiamond,” Int. J. Electrochem. Sci. 7, 6807–6815 (2012).
12. S. Osswald, G. Yushin, V. Mochalin, S. O. Kucheyev, and Y. Gogotsi, “Control of sp 2 /sp 3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air,” J. Am. Chem. Soc. 128(35), 11635–11642 (2006).
13. T. Ando, K. Yamamoto, M. Ishii, M. Kamo, and Y. Sato, “Vapour-phase oxidation of diamond surfaces in O 2 studied by diffuse reflectance Fourier-transform infrared and temperature-programmed desorption spectroscopy,” J. Chem. Soc. Faraday Trans. 89(19), 3635–3640 (1993).
14. Y. Liu, V. N. Khabashesku, and N. J. Halas, “Fluorinated nanodiamond as a wet chemistry precursor for diamond coatings covalently bonded to glass surface,” J. Am. Chem. Soc. 127(11), 3712–3713 (2005).