УДК: 681.787
The detection of gravitational waves: the contribution of the Applied Physics Institute, Russian Academy of Sciences
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Хазанов Е.А., Сергеев А.М. Обнаружение гравитационных волн. Вклад ИПФ РАН // Оптический журнал. 2017. Т. 84. № 10. С. 75–84.
Khazanov E.A., Sergeev A.M. The detection of gravitational waves: the contribution of the Applied Physics Institute, Russian Academy of Sciences [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 10. P. 75–84.
E. A. Khazanov and A. M. Sergeev, "The detection of gravitational waves: the contribution of the Applied Physics Institute, Russian Academy of Sciences," Journal of Optical Technology. 84(10), 710-717 (2017). https://doi.org/10.1364/JOT.84.000710
September 14, 2015 marked the day that the LIGO collaboration recorded a gravitational-wave signal arriving from the merger of two black holes that occurred 1.3 billion years ago. The LIGO detector is based on a Michelson interferometer with an arm length of 4 km. The achieved sensitivity makes it possible to detect a change of the arm length smaller than 10−19 meter. We discuss the physical problems that were solved in order to achieve this unprecedented sensitivity. The most essential contribution of the Applied Physics Institute, Russian Academy of Sciences, to the LIGO detector is the invention of unique Faraday isolators that operate with high laser radiation power. The absorption of radiation in a magneto-active medium unavoidably causes it to heat up and thermally induces polarization and phase distortion of the laser beam. This article presents an analysis of all the distortions of the laser beam from the viewpoint of the degradation of the parameters of the isolator. The mechanisms and key physical quantities responsible for the various forms of the distortions have been determined. The existing methods of compensating and suppressing parasitic thermal effects are described in detail.
precision interferometric measurements, Faraday isolator, photoelastic effect
Acknowledgements:The research was supported by the Russian Academy of Sciences (RAS) (0035-2014-0016).
OCIS codes: 120.3180, 140.6810
References:1. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO—the Laser-Interferometer-Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
2. B. P. Abbott, et al., “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116, 061102 (2016), https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.116.061102.
3. M. E. Gertsenshteı˘n and V. I. Pustovoı˘t, “On the detection of low-frequency gravitational waves,” Sov. Phys. JETP 16(2), 433–435 (1963) [Zh. Eksp. Teor. Fiz. 43(2), 605–607 (1962)].
4. T. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
5. Yu. A. Anan’ev, N. A. Kozlov, A. A. Mak, and A. I. Stepanov, “Thermal deformation of the cavity of a solid-state laser,” Zh. Prikl. Spektrosk. 5(1), 51–55 (1966).
6. A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermo-optics of Solid-State Lasers (Mashinostroenie, Leningrad, 1986).
7. W. C. Scott and M. de Wit, “Birefringence compensation and TEM 00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18(1), 3–4 (1971).
8. G. Giuliani and P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35(1), 109–112 (1980).
9. Rayleigh, “On the constant of magnetic rotation of light in bisulphide of carbon,” Philos. Trans. R. Soc. London 176, 343–366 (1885).
10. M. Faraday, “Experimental researches in electricity. Nineteenth Series,” Philos. Trans. R. Soc. London 136, 1–20 (1846).
11. N. F. Andreev, O. V. Palashov, G. A. Pasmanik, and E. A. Khazanov, “Four-channel pulse-periodic Nd:YAG laser with diffraction-limited output radiation,” Quantum Electron. 27(7), 565–569 (1997) [Kvant. Elektron. (Moscow) 24(7), 581–585 (1997)].
12. N. Andreev, E. Khazanov, O. Kulagin, B. Movshevich, O. Palashov, G. Pasmanik, V. Rodchenkov, A. Scott, and P. Soan, “A two-channel repetitively pulsed Nd:YAG laser operating at 25 Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35(1), 110–114 (1999).
13. E. A. Khazanov, O. V. Kulagin, S. Yoshida, and D. Reitze, “Investigation of self-induced distortions of laser radiation in lithium niobate and terbium gallium garnet,” in Proceedings of the Conference on Lasers and Electro-Optics, San Francisco, California, 3–8 May 1998, pp. 250–251.
14. E. A. Khazanov, “Compensation of thermally induced polarisation distortions in Faraday isolators,” Quantum Electron. 29(1), 59–64 (1999) [Kvant. Elektron. (Moscow) 26(1), 59–64 (1999)].
15. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
16. E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, and D. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17(1), 99–102 (2000).
17. N. F. Andreev, A. A. Babin, T. V. Zarubina, A. M. Kiselev, O. V. Palashov, E. A. Khazanov, and O. S. Shchavelev, “Study of the thermooptical constants of magnetooptic glasses,” J. Opt. Technol. 67(6), 556–558 (2000) [Opt. Zh. 67(6), 66–69 (2000)].
18. E. A. Khazanov, “Characteristic features of the operation of different designs of the Faraday isolator for a high average laser-radiation power,” Quantum Electron. 30(2), 147–151 (2000) [Kvant. Elektron. (Moscow) 30(2), 147–151 (2000)].
19. N. F. Andreev, O. V. Palashov, A. K. Potemkin, D. Kh. Raı˘ttsi, A. M. Sergeev, and E. A. Khazanov, “45-dB Faraday isolator for 100 W average radiation power,” Quantum Electron. 30(12), 1107–1108 (2000) [Kvant. Elektron. (Moscow) 30(12), 1107–1108 (2000)].
20. E. A. Khazanov, “A new Faraday rotator for high average power lasers,” Quantum Electron. 31(4), 351–356 (2001) [Kvant. Elektron. (Moscow) 31(4), 351–356 (2001)].
21. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
22. G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational-wave interferometers,” Classical Quantum Gravity 19, 1793–1801 (2002).
23. E. A. Khazanov, A. A. Anastasiyev, N. F. Andreev, A. Voytovich, and O. V. Palashov, “Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power,” Appl. Opt. 41(15), 2947–2954 (2002).
24. N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Potemkin, D. Kh. Raı˘ttsi, A. M. Sergeev, and E. A. Khazanov, “The use of crystalline quartz for compensation for thermally induced depolarisation in Faraday isolators,” Quantum Electron. 32(1), 91–94 (2002) [Kvant. Elektron. (Moscow) 32(1), 91–94 (2002)].
25. E. A. Khazanov, “Thermooptics of magnetoactive media: Faraday isolators for high average power lasers,” Phys.–Usp. 59(9), 886–909 (2016) [Usp. Fiz. Nauk 186(9), 975–1000 (2016)].
26. D. S. Zheleznov, V. V. Zelenogorskiı˘, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40(3), 276–281 (2010) [Kvant. Elektron. (Moscow) 40(3), 276–281 (2010)].
27. I. L. Snetkov, R. Yasuhara, A. V. Starobor, E. A. Mironov, and O. V. Palashov, “Thermo-optical and magneto-optical characteristics of terbium scandium aluminum garnet crystals,” IEEE J. Quantum Electron. 51(7), 7000307 (2015).
28. The VIRGO Collaboration, “In-vacuum optical isolation changes by heating in a Faraday isolator,” Appl. Opt. 47(31), 5853–5861 (2008).
29. O. V. Palashov, D. S. Zheleznov, A. V. Voitovich, V. V. Zelenogorsky, E. E. Kamenetsky, E. A. Khazanov, R. M. Martin, K. L. Dooley, L. Williams, A. Lucianetti, V. Quetschke, G. Mueller, D. H. Reitze, D. B. Tanner, E. Genin, B. Canuel, and J. Marque, “High-vacuum-compatible high-power Faraday isolators for gravitational-wave inter-ferometers,” J. Opt. Soc. Am. B 29(7), 1784–1792 (2012).
30. L. D. Katherin, M. A. Arain, D. Feldbaum, V. V. Frolov, M. Heintze, D. Hoak, E. A. Khazanov, A. Lucianetti, R. M. Martin, G. Mueller, O. Palashov, V. Quetschke, D. H. Reitze, R. L. Savage, D. B. Tanner, L. F. Williams, and W. Wu, “Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers,” Rev. Sci. Instrum. 83, 033109 (2012).
31. I. L. Snetkov, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Compensation of thermally induced depolarization in Faraday isolators for high average power lasers,” Opt. Express 19(7), 6366–6376 (2011).
32. I. L. Snetkov, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “Review of Faraday isolators for kilowatt average power lasers,” IEEE J. Quantum Electron. 50(6), 434–443 (2014).
33. V. Zelenogorsky, O. Palashov, and E. Khazanov, “Adaptive compensation of thermally induced phase aberrations in Faraday isolators by means of a DKDP crystal,” Opt. Commun. 278(1), 8–13 (2007).