УДК: 520.6
Infrared microbolometer array-based Earth-oriented attitude sensor
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Пирогов М.Г., Варламов В.И., Гордякин В.В., Стрижова Н.М., Гебгарт А.Я., Зензинов С.Ю., Албул Е.В., Сафронов К.П. Прибор ориентации по Земле для инфракрасного диапазона спектра на основе микроболометрической матрицы // Оптический журнал. 2017. Т. 84. № 11. С. 22–28.
Pirogov M.G., Varlamov V.I., Gordyakin V.V., Strizhova N.M., Gebgart A.Ya., Zenzinov S.Yu., Albul E.V., Safronov K.P. Infrared microbolometer array-based Earth-oriented attitude sensor [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 11. P. 22–28.
M. G. Pirogov, V. I. Varlamov, V. V. Gordyakin, N. M. Strizhova, A. Ya. Gebgart, S. Yu. Zenzinov, E. V. Albul, and K. P. Safronov, "Infrared microbolometer array-based Earth-oriented attitude sensor," Journal of Optical Technology. 84(11), 734-738 (2017). https://doi.org/10.1364/JOT.84.000734
We describe the 344K infrared variable-altitude Earth-oriented attitude sensor developed for use aboard the Luch spacecraft (and other spacecraft), provide details regarding the main characteristics of the instrument and various design features of the instrument and its optical system, and discuss the major operating modes for the instrument.
Earth-oriented attitude sensor, infrared band, extremely-wide-angle objective, uncooled microbolometer detector array
OCIS codes: 120.0120, 250.0250, 350.6090
References:1. L. A. Glebovich and I. V. Pevunchikov, “Prospective systems for constructing IR devices for orientation with respect to the Earth,” J. Opt. Technol. 83(2), 666–668 (1998) [Opt. Zh. 65(8), 76–79 (1998)].
2. A. E. Rabovskiı˘, B. V. Medvedev, and P. M. Ostroverkhov, “Two-coordinate high-precision device for orientation with respect to the earth for a geostationary satellite,” J. Opt. Technol. 63(7), 544–547 (1996) [Opt. Zh. 63(7), 50–53 (1996)].
3. V. M. Popkov, “High-accuracy IR device for orientation with respect to the Earth, using information from two parallel scanning trajectories,” J. Opt. Technol. 63(7), 544–547 (1996) [Opt. Zh. 63(7), 54–56 (1996)].
4. V. I. Fedoseev and M. P. Kolosov, Optoelectronic Devices for Spacecraft Orientation and Navigation (Logos, Moscow, 2007).
5. M. G. Pirogov, Yu. A. Videtskikh, V. I. Fedoseev, V. I. Varlamov, S. Yu. Zenzinov, M. P. Kolosov, N. M. Strizhova, A. Ya. Gebgart, V. V. Denisov, and M. A. Terekhov, “Devices for orientation with respect to the earth, based on uncooled microbolometer detector arrays for spacecraft,” in Abstracts of Reports of the Twentieth International Scientific and Technical Conference on Photoelectronics and Night-Vision Devices (NPO Orion, Moscow, 2008), pp. 66–67.
6. A. Ya. Gebgart, “Design features of some types of ultrawide-angle objectives,” J. Opt. Technol. 77(9), 538–541 (2010) [Opt. Zh. 77(9), 17–21 (2010)].
7. A. Ya. Gebgart, E. A. Shatova, and V. V. Medvedev, “The optical systems of certain types of wide-angle IR objectives,” J. Opt. Technol. 80(2), 107–109 (2013) [Opt. Zh. 80(2), 48–51 (2013)].
8. V. V. Gordyakin, N. M. Strizhova, and N. A. Shatalova, “Earth attitude sensor based on microbolometer array,” Russian utility model patent no. 132887 (2013).
9. A. V. Solodov, ed., Space Hardware Engineering Handbook (Voenizdat, Moscow, 1977).