УДК: 535.317.2
Stand for testing static wide-angle infrared Earth orientation devices
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Гебгарт А.Я., Колосов М.П., Стрижова Н.М., Назарбаев К.Н. Стенд для проверки статических широкоугольных приборов ориентации по Земле, работающих в инфракрасном спектральном диапазонес // Оптический журнал. 2017. Т. 84. № 11. С. 29–33.
Gebgart A.Ya., Kolosov M.P., Strizhova N.M., Nazarbaev K.N. Stand for testing static wide-angle infrared Earth orientation devices [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 11. P. 29–33.
A. Ya. Gebgart, M. P. Kolosov, N. M. Strizhova, and K. N. Nazarbaev, "Stand for testing static wide-angle infrared Earth orientation devices," Journal of Optical Technology. 84(11), 739-742 (2017). https://doi.org/10.1364/JOT.84.000739
A test stand for testing static wide-angle devices for orientation with respect to the Earth operating in the infrared region of the spectrum is considered. The shortcomings of the existing methods for constructing the Earth-atmosphere-space simulators have been identified. The features of the design of the Earth-atmosphere-space simulator included in this test stand are shown.
infrared Earth-oriented attitude sensor, Earth-atmosphere-space simulators
OCIS codes: 220.0220, 220.3620, 220. 4830
References:1. M. G. Pirogov, Yu. A. Videtskikh, V. I. Fedoseev, V. I. Varlamov, S. Yu. Zenzinov, M. P. Kolosov, N. M. Strizhova, A. Ya. Gebgart, V. V. Denisov, and M. A. Terekhov, “Earth orientation devices based on uncooled microbolometer detector arrays for spacecraft (EOD),” in Abstracts from the XX International Scientific and Technical Conference on Photoelectronics and Night Vision Devices (NPO “Orion,” Moscow, 2008), pp. 66–67.
2. V. I. Fedoseev and M. P. Kolosov, Optoelectronic Devices for Orientation and Navigation of Spacecraft (Logos, Moscow, 2007).
3. A. N. Egupov, ed. Geophysics—175 Years (Novosti, Moscow, 2012).
4. V. V. Gordyakin, N. M. Strizhova, and N. A. Shatalova, “Earth orientation device based on a microbolometer array,” Russian utility patent 132887 (2013).
5. A. Ya. Gebgart, “Design features of some types of ultrawide-angle objectives,” J. Opt. Technol. 77(9), 538–541 (2010) [Opt. Zh. 77(9), 17–21 (2010)].
6. A. Ya. Gebgart, E. A. Shatova, and V. V. Medvedev, “The optical systems of certain types of wide-angle IR objectives,” J. Opt. Technol. 80(2), 107–109 (2013) [Opt. Zh. 80(2), 48–51 (2013)].
7. Z. Wang, G.-y. Zhang, Q.-m. Chen, X.-y. Sun, and Y.-j. Gao, “Optical and mechanical structure design of a high altitude orbits collimating infrared Earth simulator,” Proc. SPIE 8907, 89071O (2013).
8. M. P. Kolosov, A. Ya. Gebgart, N. M. Strizhova, and K. N. Nazarbayev, “Instrument for calibration and testing of static wide-field angle-measurement infrared Earth orientation devices,” Russian utility patent 147304 (2014).
9. M. P. Kolosov, A. Ya. Gebgart, N. M. Strizhova, and K. N. Nazarbayev, “Test stand for calibration and testing of static wide-field angle-measurement infrared Earth orientation devices,” in the 10th International Forum OPTICS-EXPO 2014, Abstracts of Presentations of the Scientific and Practical Applications Conference “Optics in Science and Technology” (2014).
10. M. P. Kolosov, A. Ya. Gebgart, N. M. Strizhova, and K. N. Nazarbayev, “Instrument for testing static wide-field angle-measuring infrared earth orientation devices,” Russian utility patent 166306 (2016).