ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 520.6

Modern spacecraft-astroorientation devices developed by Geofizika–Kosmos Scientific Production Enterprise: a review

For Russian citation (Opticheskii Zhurnal):

Пирогов М.Г., Варламов В.И., Герасимов С.А., Гордякин В.В., Карелин А.Ю., Князев В.О., Стрижова Н.М., Федосеев В.И., Цымбал Г.Л. Современные приборы астроориентации космических аппаратов разработки научно-производственного предприятия «Геофизика-Космос». Обзор // Оптический журнал. 2017. Т. 84. № 11. С. 4–13.

 

Pirogov M.G., Varlamov V.I., Gerasimov S.A., Gordyakin V.V., Karelin A.Yu., Knyazev V.O., Strizhova N.M., Fedoseev V.I., Tsymbal G.L. Modern spacecraft-astroorientation devices developed by Geofizika–Kosmos Scientific Production Enterprise: a review [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 11. P. 4–13.

For citation (Journal of Optical Technology):

M. G. Pirogov, V. I. Varlamov, S. A. Gerasimov, V. V. Gordyakin, A. Yu. Karelin, V. O. Knyazev, N. M. Strizhova, V. I. Fedoseev, and G. L. Tsymbal, "Modern spacecraft-astroorientation devices developed by Geofizika–Kosmos Scientific Production Enterprise: a review," Journal of Optical Technology. 84(11), 719-726 (2017). https://doi.org/10.1364/JOT.84.000719

Abstract:

This paper discusses astroorientation devices for space systems Glonass, Luch, GEO-IK2, etc., developed in recent years, and devices that are currently being developed. Their features are pointed out in comparison with those created earlier, and the results of flight testing are presented.

Keywords:

stellar devices, solar devices, earth devices

OCIS codes: 120.0120, 250.0250, 350.6090

References:

1. Ya. M. Ivandikov, Optoelectronic Devices for Spacecraft Orientation and Navigation (Mashinostroenie, Moscow, 1971).
2. A. I. Isnar, A. V. Pavlov, and V. F. Fedorov, Optoelectronic Devices for Spacecraft (Mashinostroenie, Moscow, 1972).
3. V. S. Kuz’min and V. I. Fedoseev, “Optoelectronic devices for the orientation and navigation of spacecraft: development experience, problems, and trends,” J. Opt. Technol. 63(7), 500–504 (1996) [Opticheskiı˘ zhurnal 63(7), 4–9 (1996)].
4. V. I. Fedoseev and M. P. Kolosov, Optoelectronic Devices for the Orientation and Navigation of Spacecraft (Logos, Moscow, 2007).
5. M. P. Kolosov, The Optics of Adaptive Goniometers (Logos, Moscow, 2011).
6. M. G. Pirogov and V. I. Fedoseev, “Next-generation optoelectronic devices for the orientation of spacecraft,” in Fourth International Conference–Exhibition on Small Satellites, New Technologies, Miniaturization, Areas of Effective Use in the Twenty-First Century, Korolev, Moscow Oblast, May 31–June 4, 2004, book 1, pp. 112–119.
7. G. A. Efremov, “Kosmos sends an SOS,” Izvestiya 29815(77), 9, April 28, 2017.
8. J. Ouaknine, P. Jacob, L. Blarre, and Y. Kocher, “In-flight results synthesis of up to 52 SED16/26 star trackers,” in Proceedings of the Seventh International Conference on Space Optics, Toulouse, France, October 14–17, 2008, pp. 121–165.
9. L. Blarre, J. Ouaknine, L. Oddos-Marcell, and P. E. Martinez, “High-accuracy Sodern star tracker: recent improvements proposed on SED36 and Hydra star trackers,” in Preparation of Papers for AIAA Technical Conference AIAA GNC, 2006, pp. 68–72.
10. L. Blarre, N. Perrimon, L. Majewski, E. Anciant, S. Airey, and J. M. Julio, “Hydra, a new multiple-heads APS-based star sensor: description and discussion of the robustness improvement enablement by the APS technology,” in Proceedings of the Thirtieth Annual AAS Guidance and Control Conference, Breckenridge, Colorado, February 3–7, 2007, AAS 07-065, pp. 1–16.
11. Hydra CMOS star tracer brochure, Sodern, 2015.
12. D. Michaels and J. Speed, “New Ball Aerospace star tracer achieves high tracking accuracy for moving star field,” Proc. SPIE 5430, 43–51 (2004).
13. High Accuracy Star Tracker brochure, Ball Aerospace, 2011.
14. S. A. Dyatlov and R. V. Bessonov, “Review of celestial orientation sensors for spacecraft orientation,” in All-Russia Scientific–Engineering Conference on Modern Problems of Determining the Orientation and Navigation of Spacecraft, Tarusa, Russia, September 22–25, 2008, pp. 11–31.
15. G. A. Avanesov, R. V. Bessonov, and A. N. Kurkina, “Study of the errors in determining the orientation parameters of the BOKZ-VT high-accuracy device,” in the Fifth All-Russia Scientific–Engineering Conference on Modern Problems of Determining the Orientation and Navigation of Spacecraft, Tarusa, Russia, September 5–8, 2016, p. 16.
16. A. I. Baklanov, A. V. Verkhovtseva, A. S. Zabiyakin, A. S. Knyazev, and A. I. Tsilyurik, “Results of the ground-based processing of a high-accuracy star sensor for an optoelectronic complex,” in Systems for the Observation, Monitoring, and Remote Probing of the Earth, Materials of the Twelfth Scientific–Engineering Conference, Sochi, Russia, September 21–27, 2015, pp. 189–196.
17. V. I. Fedoseev, “Ways to increase the accuracy of devices for orienting spacecraft with respect to the stars,” in Systems for the Observation,Monitoring, and Remote Probing of the Earth, Materials of the Twelfth Scientific–Engineering Conference, Sochi, Russia, September 21–27, 2015, pp. 120–124.
18. Fine Sun Sensor Datasheet, 2012, http://www.bradford-space.com.
19. Coarse Sun Sensor Datasheet, 2012, http://www.bradford-space.com.
20. http://www.caravan-ny.com/digital_sun_sensors.html.
21. http://www.space-airbusds.com/en/equipment/bass.html.
22. http://www.space-airbusds.com/en/equipment/liass.html.
23. G. A. Avanesov, A. V. Nikitin, and A. A. Forsh, “Optical solar sensor,” Izv. Vyssh. Uchebn. Zaved. Prib. (4), 70–73 (2003).
24. Earth and attitude sensors STD15, STD16, satellite attitude, 2015, http://www.sodern.com/website/en/ref/home.html.
25. Servo Data Sheet D001-500, 2002, http://www.servo.com.
26. SSBV Earth Horizon Sensor Datasheet.
27. FGUP NPP VNIIÉM, Devices for orientation with respect to the earth, www.promkatalog.ru.
28. V. I. Fedoseev, V. V. Kunyaev, A. N. Isakov, L. M. Yudina, V. O. Knyazev, A. A. Koptev, G. P. Titov, O. V. Shevlyakov, and S. V. Latyntsev, “Ensuring the stability of devices for celestial orientation constructed on an unstable set of components,” in Fourth All-Russia Scientific–Engineering Conference on Modern Problems of Determining the Orientation and Navigation of Spacecraft, Tarusa, Russia, September 8–11, 2014, pp. 129–141.
29. A. Ya. Gebgart, M. P. Kolosov, and M. E. Gusev, “Goniometric stellar device,” Russian Patent No. 2,399,871 (2010).
30. M. P. Kolosov, A. Ya. Gebgart, Yu. N. Zybin, and A. Yu. Karelin, “Goniometric device,” Russian Patent No. 2,469,266 (2012).
31. A. Ya. Gebgart and M. P. Kolosov, “Goniometric device,” Russian Patent No. 2,525,652 (2014).
32. A. Ya. Gebgart and M. P. Kolosov, “Design features of the lens objectives of celestial-orientation apparatus for spacecraft,” J. Opt. Technol. 82(6), 357–360 (2015) [Opt. Zh. 82(6), 36–41 (2015)].
33. V. A. Zemlyakov and V. A. Chibisov, “Wide-field devices for orientation with respect to the sun,” J. Opt. Technol. 63(7), 551–552 (1996) [Opt. Zh. 63(7), 57–58 (1996)].
34. A. Ya. Gebgart, “Design features of some types of ultrawide-angle objectives,” J. Opt. Technol. 77(9), 538–541 (2010) [Opt. Zh. 77(9), 17–21 (2010)].
35. V. M. Popkov, “High-accuracy IR device for orientation with respect to the earth, using information from two parallel scanning trajectories,” J. Opt. Technol. 63(7), 548–550 (1996) [Opt. Zh. 63(7), 54–56 (1996)].
36. L. A. Glebovich and I. V. Pevunchikov, “Prospective systems for constructing IR devices for orientation with respect to the earth,” J. Opt. Technol. 65(8), 666–668 (1998) [Opt. Zh. 65(8), 76–79 (1998)].
37. A. Ya. Gebgart, E. A. Shatova, and V. V. Medvedev, “The optical systems of certain types of wide-angle IR objectives,” J. Opt. Technol. 80(2), 107–109 (2013) [Opt. Zh. 80(2), 48–51 (2013)].