ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 520.2, 535.3

Development and analysis of reflective and catadioptric optical systems for Earth remote sensing

For Russian citation (Opticheskii Zhurnal):

Бахолдин А.В., Бутылкина К.Д., Васильев В.Н., Романова Г.Э. Разработка и исследование зеркальных и зеркально-линзовых оптических систем для дистанционного зондирования Земли // Оптический журнал. 2017. Т. 84. № 11. С. 55–61.

 

Bakholdin A.V., Butylkina K.D., Vasiliev V.N., Romanova G.E. Development and analysis of reflective and catadioptric optical systems for Earth remote sensing [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 11. P. 55–61.

For citation (Journal of Optical Technology):

A. V. Bakholdin, K. D. Butylkina (Rodionova), V. N. Vasil’ev, and G. É. Romanova, "Development and analysis of reflective and catadioptric optical systems for Earth remote sensing," Journal of Optical Technology. 84(11), 761-766 (2017). https://doi.org/10.1364/JOT.84.000761

Abstract:

Objectives for Earth remote sensing are traditionally based on reflective or catadioptric optical systems. In this paper, we discuss and describe the characteristics of basic optical systems for Earth remote sensing and provide several sample calculated objectives.

Keywords:

reflective systems, catadioptric objectives, Korsch system, three-mirror objectives

OCIS codes: 220.1000, 350.1260, 350.6090

References:

1. N. N. Sevast’yanov, V. N. Branets, V. A. Panchenko, N. V. Kazanskiı˘, T. V. Kondranin, and S. S. Negodyaev, “Analysis of current capabilities in the development of small Earth remote-sensing satellites,” Trudy MFTI 1(3), 14–22 (2009).
2. S. A. Bartalev, V. S. Egorov, V. O. Zharko, E. A. Lupyan, D. E. Plotnikov, and S. A. Khvostikov, “Status and prospects for the future development of methods for satellite mapping of the vegetation cover of Russia,” Sovrem. Probl. Distantsionnogo Zondirovanie Zemli Kosmosa 12(5), 203–221 (2015).
3. A. M. Savitskiı˘ and M. N. Sokol’skiı˘, “Optical systems of objectives for small spacecraft,” J. Opt. Technol. 76(10), 657–661 (2009) [Opt. Zh. 76(10), 83–88 (2009)].
4. E. R. Malamed, M. N. Sokol’skiı˘, A. I. Baklanov, V. I. Karasev, and V. V. Kolotkov, “Catadioptric space telescope,” Russian Federation Patent No. 2115942 (1998).
5. “Spacecraft with optoelectronic Earth remote-sensing systems,” Geomatika 2(1), 84–92 (2009).
6. A. Borisov, Belorussian Spacecraft (BKA), http://gis.by/ru/tech/bka.
7. A. E. Ufimtsev and A. A. Ermak, “Use of Earth remote-sensing data for management of rational land use,” Vestn. Yugorskogo Gos. Univ. 3(34), 70–73 (2014).
8. E. R. Malamed, M. N. Sokol’skiı˘, M. V. Voronova, and L. M. Lapo, “Space telescope objective,” Russian Federation Patent No. 35446 (2003).
9. S. A. Veselkov, M. V. Zemtsova, and M. A. Shilova, “A Ritchey-Chretien optical system as a wide-angle survey telescope,” Vestn. SibGAU 44(2), 25–29 (2014).
10. A. I. Lysenko, E. R. Malamed, M. N. Sokol’skiı˘, Yu. D. Pimenov, and I. E. Putilov, “Optical layouts of the objectives of space telescopes,” J. Opt. Technol. 69(9), 618–621 (2002) [Opt. Zh. 69(9), 21–25 (2002)].
11. A. M. Savitskiı˘, M. N. Sokol’skiı˘, A. I. Baklanov, and M. V. Klyushnikov, “Optical designs for hyperspectrometers in space telescopes,” in Abstracts of Papers from the Scientific and Engineering Conference on Hyperspectral Instruments and Technologies (KONTENANT, Krasnogorsk, 2013), p. 48.
12. M. N. Sokol’skiı˘ and N. M. Asadulin, “Space telescope with built-in hyperspectrometer,” Izv. VUZov. Priborostr. 58(11), 874–877 (2015).
13. G. I. Tsukanova, “Catadioptric objectives with reduced shielding and axial length,” Nauchno-Tekhn. Vestn. SPbGU ITMO 18, 279–283 (2005).
14. Pleiades-HR (High-Resolution Optical Imaging Constellation of CNES), https://directory.eoportal.org/web/eoportal/satellite-missions/p/pleiades.
15. A. Borisov, “Vietnamese small spacecraft for natural resource monitoring” (in Russian), 2013, http://sputnix.ru/ru/analitika/item/320-vetnamskij-mka-monitoringa-prirodnykh-resursov.
16. G. I. Tsukanova and K. D. Butylkina, “Fast three-mirror objectives having no intermediate image with convex second and concave third mirrors,” J. Opt. Technol. 81(3), 114–117 (2014) [Opt. Zh. 81(3), 3–7 (2014)].
17. A. V. Bakholdin, K. D. Butylkina, and G. E. Romanova, “Analysis of the three-mirror systems for survey telescopes,” Proc. SPIE 9906, 99062N (2016).
18. V. A. Zverev and S. V. Gaı˘voronskiı˘, “Analysis of the correction parameters of an optical system consisting of three reflective surfaces,” Izv. VUZov. Priborostr. 55, 42–47 (2012).

19. V. N. Churilovskiı˘, Theory of Chromatic Aberration and Third Order Aberrations (Mashinostroenie, Leningrad, 1968).
20. A. V. Sanikovich and A. N. Yudin, “Catadioptric telescopes for use in survey astronomy—optical systems and practical implementation,” in Abstracts of Papers from the IX International Conference on Applied Optics, Saint Petersburg (ITMO, 2010), pp. 8–12.
21. D. Korsch, “Anastigmatic three-mirror telescope,” Appl. Opt. 16(8), 2074–2077 (1977).
22. V. A. Zverev and A. N. Shepelevich, “The concept of a thin component in a system of reflective surfaces,” J. Opt. Technol. 73(12), 840–845 (2006) [Opt. Zh. 73(12), 21–26 (2006)].
23. V. A. Zverev and A. N. Shepelevich, “Parametric synthesis of a three-mirror optical system from a basic two-mirror system,” Nauchno-Tekhn. Vestn. SPbGU ITMO 38(4), 98–104 (2007).
24. M. S. Chubeı˘, A. V. Bakholdin, G. I. Tsukanova, and V. S. Pashkov, “An orbital wide-angle astrograph to obtain high-astrometric-resolution and high-photometric-resolution images,” Mekh. Upr. Inf. (2), 174–182 (2011).
25. S. A. Veselkin, E. G. Lapukhin, A. G. Mikhaı˘lichenko, D. A. Fomin, and P. A. Bazhenov, “Prospective telescopes for the remote astrophysical observatory project at the Academician M. F. Reshetneva Siberian State Air and Space University,” Vestn. Sib. Gos. Aérokosmicheskogo Univ. Akad. M. F. Reshetneva 1(34), 88–91 (2011).
26. E. Rachim, A. M. Tahir, and A. Herawan, “Preliminary of optical lens design for micro-satellite,” IOP Conf. Ser.: Earth Environ. Sci. 54, 012095 (2017).
27. O. V. Bagdasarova, D. N. Vorontsov, and G. V. Karpova, “Versions of the arrangement of a mirror–lens objective based on a Gregorian mirror objective system,” J. Opt. Technol. 79(5), 305–307 (2012) [Opt. Zh. 79(5), 61–64 (2012)].
28. J. V. Gorbatenko and G. I. Tsukanova, “Designing starting systems for orthoscopic mirror–lens objectives,” J. Opt. Technol. 79(4), 205–207 (2012) [Opt. Zh. 79(4), 13–16 (2012)].
29. Colorless Optical Glass Catalog, Lytkarino Optical Glass Plant, http://lzos.ru/content/view/77/29/.
30. O. S. Shchavelev and L. N. Arkhipova, “Athermal optical glasses and thermally stable space-based apochromats,” J. Opt. Technol. 70(8), 576–585 (2003) [Opt. Zh. 70(8), 58–69 (2003)].
31. A. M. Savitskiı˘ and M. N. Sokol’skiı˘, “Optical systems of objectives for small spacecraft,” J. Opt. Technol. 76(10), 657–661 (2009) [Opt. Zh. 76(10), 83–88 (2009)].