УДК: 535.4, 681.7.02-04, 681.787
Automatic aspherization of off-axis highly aspheric surfaces of large optical items
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Семенов А.П., Абдулкадыров М.А., Добриков Н.С., Игнатов А.Н., Патрикеев В.Е., Папаев А.Ю., Полянщиков А.В., Придня В.В. Автоматизированная асферизация внеосевых высокоасферичных поверхностей крупногабаритных оптических деталей // Оптический журнал. 2017. Т. 84. № 11. С. 62–68.
Semenov A.P., Abdulkadyrov M.A., Dobrikov N.S., Ignatov A.N., Patrikeev V.E., Papaev A.Yu., Polyanshchikov A.V., Pridnya V.V. Automatic aspherization of off-axis highly aspheric surfaces of large optical items [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 11. P. 62–68.
A. P. Semenov, M. A. Abdulkadyrov, N. S. Dobrikov, A. N. Ignatov, V. E. Patrikeev, A. Yu. Papaev, A. V. Polyanshchikov, and V. V. Pridnya, "Automatic aspherization of off-axis highly aspheric surfaces of large optical items," Journal of Optical Technology. 84(11), 767-772 (2017). https://doi.org/10.1364/JOT.84.000767
The development of shaping technology, which may involve the use of an automatic system with software control and a set of special tools, makes it possible to aspherize large off-axis optical elements of astronomical and space-based telescopes in which the deviation from the nearest sphere is greater than 1 mm. This paper discusses an example of the automatic shaping of an off-axis mirror 560 mm in diameter with asphericity 200 μm in which the surface shape is monitored with a diffraction optical element. A method is considered for preliminary aspherization of an off-axis segment of a composite mirror 1520 mm in diameter, involving the elastic deformation of a segment, followed by automatic finishing. The paper presents the results of aspherization for the Millimetron telescope project, using automatic milling, grinding, and polishing of convex off-axis elements made from Astrositall with more than 1 mm asphericity.
telescope, glass ceramics, Astrositall, astronomical mirrors, lightened mirror, timing and deformation stability
OCIS codes: 220.0220; 220.0230; 220.4610; 350.1260
References:1. M. A. Abdulkadyrov, S. P. Belousov, A. N. Ignatov, V. E. Patrikeev, V. V. Pridnya, A. V. Polyanchikov, V. V. Rumyantsev, A. V. Samuylov, A. P. Semenov, and Y. A. Sharov, “Manufacturing of primary mirrors from Sitall CO-115M for European projects TTL, NOA and VST,” Proc. SPIE 4451, 131–137 (2001).
2. A. P. Semenov, M. A. Abdulkadyrov, S. P. Belousov, A. N. Ignatov, V. E. Patrikeev, V. V. Pridnya, A. V. Polyanchikov, V. V. Rumyantsev, A. V. Samuylov, and Y. A. Sharov, “Manufacturing of secondary mirrors from Sitall CO-115M for European projects TTL, NOA and VST,” Proc. SPIE 4451, 138–144 (2001).
3. M. A. Abdulkadyrov, A. P. Patrikeev, S. P. Belousov, A. P. Semenov, V. E. Patrikeev, A. N. Ignatov, A. V. Polyanchikov, V. V. Pridnya, Y. A. Sharov, A. G. Poleshchuk, and R. K. Nasyrov, “M1 primary mirror manufacturing for VISTA project,” Proc. SPIE 7018, 701804 (2008).
4. M. A. Abdulkadyrov, A. P. Patrikeev, S. P. Belousov, V. V. Pridnya, V. E. Patrikeev, A. N. Ignatov, A. V. Polyanchikov, A. P. Semenov, and Y. A. Sharov, “M2 secondary mirror manufacturing for VISTA project,” Proc. SPIE 7018, 70180B (2008).
5. M. A. Abdulkadyrov, S. P. Belousov, V. E. Patrikeev, and A. P. Semenov, “Interference testing methods of large astronomical mirrors based on lenses and CGH wavefront correctors,” Proc. SPIE 7739, 77390P (2010).
6. A. P. Semenov, M. A. Abdulkadyrov, S. P. Belousov, V. E. Patrikeev, and V. V. Pridnya, “Methods of fabrication and testing of unique large size optics in LZOS, JSC (VST, VISTA and other projects),” Proc. SPIE 8450, 84504T (2012).
7. A. P. Semenov, M. A. Abdulkadyrov, A. P. Patrikeev, V. E. Patrikeev, and V. V. Pridnya, “M1 and M2 mirror manufacturing for ARIES project: current status,” Proc. SPIE 7739, 773907 (2010).
8. A. P. Semenov, “Accomplished the task of production of the primary and secondary mirrors of Devasthal Optical Telescope under the project ARIES (India, Belgium, Russia): fabrication features,” Proc. SPIE 8450, 84504R (2012).
9. M. A. Abdulkadyrov and A. P. Semenov, “Instrument for end grinding of the highly aspheric surface of an optical component,” Russian Patent for a useful model No. 159232 (2015).
10. http://lapic.ru/catalog/Koordinatno_izmeritelnaya_mashina_KIM_1400/.
11. A. G. Poleshchuk, “Fabrication and application of diffractive optical elements,” Proc. SPIE 7544, 75443L (2010).
12. A. G. Poleshchuk, “Computer generated holograms for aspheric optics testing,” Proc. SPIE 7133, 713333 (2009).
13. A. G. Poleshchuk and A. E. Matochkin, “Laser methods of monitoring aspheric optics,” Fotonika 26(2), 38–43 (2011).
14. A. G. Poleshchuk, V. N. Khomutov, A. E. Matochkin, R. K. Nasyrov, and V. V. Cherkashin, “Laser interferometry for monitoring the shape of optical surfaces,” Fotonika (4), 38–50 (2016).
15. J. Lubliner, E. Jerry, and J. E. Nelson, “Stressed mirror polishing. 1: Nonaxisymmetric mirrors,” 33(34), 8094–8100 (1994).
16. J. H. Burge, “Measurement of large convex aspheres,” Proc. SPIE 2871, 362–373 (1996).
17. B. K. Smith, J. H. Burge, and H. M. Martin, “Fabrication of large secondary mirrors for astronomical telescopes,” Proc. SPIE 3134, 51–61 (1997).
18. J. H. Burge, P. Su, and C. Zhao, “Optical metrology for very large convex aspheres,” Proc. SPIE 7018, 701818 (2008).