УДК: 535.417, 535.317, 778.38
Effect of object-discretization period on the depth of field of images reconstructed using synthesized Fresnel hologram-projectors
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Корешев С.Н., Смородинов Д.С., Фролова М.А. Влияние периода дискретизации объекта на глубину резкости изображений, восстанавливаемых с помощью синтезированных голограмм-проекторов Френеля // Оптический журнал. 2017. Т. 84. № 11. С. 69–72.
Koreshev S.N., Smorodinov D.S., Frolova M.A. Effect of object-discretization period on the depth of field of images reconstructed using synthesized Fresnel hologram-projectors [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 11. P. 69–72.
S. N. Koreshev, D. S. Smorodinov, and M. A. Frolova, "Effect of object-discretization period on the depth of field of images reconstructed using synthesized Fresnel hologram-projectors," Journal of Optical Technology. 84(11), 773-776 (2017). https://doi.org/10.1364/JOT.84.000773
In this paper, we present the results of our investigation regarding the effect of a discretization period of an object on the depth of field of the reconstructed image. It was established that the use of the object-discretization period in the synthesis of the hologram, which is the maximum permissible period based on the spatial-frequency analysis of the discrete hologram, leads to an inverse dependence of the depth of field on the size of the object’s structural elements, in comparison to the traditional dependence for optical systems. Recommendations are made for choosing an object-discretization period that provides the traditional dependence of the depth of field on the size of the object’s structural elements for optical systems.
synthesis of holograms, depth of field, object discretization, discretization period, dependence of the depth of field on discretization parameters
OCIS codes: 090.0090
References:1. C. S. Narayanamurthy, G. Pedrini, and W. Osten, “Digital holographic photoelasticity,” Appl. Opt. 56(13), 213–217 (2017).
2. L. Martinez-Leon, P. Clemente, Y. Mori, V. Climent, J. Lancis, and E. Tajahuerce, “Single-pixel digital holography with phase encoded illumination,” Opt. Express 25(5), 4975–4984 (2017).
3. S. N. Koreshev, O. V. Nikanorov, and D. S. Smorodinov, “Influence of the discreteness of synthetic and digital holograms on their imaging properties,” Comput. Opt. 40(6), 793–801 (2016).
4. S. N. Koreshev, D. S. Smorodinov, and O. V. Nikanorov, “Imaging properties of discrete holograms. I. How the discreteness of a hologram affects image reconstruction,” J. Opt. Technol. 81(3), 123–127 (2014) [Opt. Zh. 81(3), 14–19 (2014)].
5. S. N. Koreshev, O. V. Nikanorov, and A. D. Gromov, “Method of synthesizing hologram projectors based on breaking down the structure of an object into typical elements, and a software package for implementing it,” J. Opt. Tech. 79(12), 769–774 (2012) [Opt. Zh. 79(12), 30–37 (2012)].
6. G. S. Landsberg, Optics (Fizmatlit, Moscow, 2003).
7. M. Franson, Optics of Speckles (Mir, Moscow, 1980).
8. A. A. Shekhonin, ed., Applied Optics, Part 2 (SPb GITMO (TU), St. Petersburg, 2003), p. 32.
9. S. N. Koreshev, D. S. Smorodinov, O. V. Nikanorov, and A. D. Gromov, “How the method of representing an object affects the imaging properties of synthesized holograms,” J. Opt. Technol. 82(4), 246–251 (2015) [Opt. Zh. 82(4), 66–73 (2015)].