УДК: 621.383.7
Modern photodetector arrays for detection of weak signals by spacecraft astroorientation instruments
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Федосеев В.И. Современные матричные фотоприёмники для приёма слабых сигналов в приборах астроориентации космических аппаратов // Оптический журнал. 2017. Т. 84. № 12. С. 11–17.
Fedoseev V.I. Modern photodetector arrays for detection of weak signals by spacecraft astroorientation instruments [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 12. P. 11–17.
V. I. Fedoseev, "Modern photodetector arrays for detection of weak signals by spacecraft astroorientation instruments," Journal of Optical Technology. 84(12), 799-804 (2017). https://doi.org/10.1364/JOT.84.000799
We describe three classes of modern detector arrays for detection of weak optical signals—traditional CCD photoconverters (CCDs), electron-multiplied CCD photoconverters (EMCCDs), and CMOS photoconverters (CMOS arrays). Specific characteristic properties are provided for each class of detector in terms of functionality, architecture, and photoelectric/operational specifications; this information in turn determines the effectiveness of each detector class for application to a specific instrument. We cite several examples of photodetector arrays currently in production that demonstrate the capabilities of each class of photodetector discussed in this paper.
detector arrays, photodetector parameters, detectors internal noise
Acknowledgements:The author thanks A. B. Romanovskiı˘, who developed a methodology for calculating the integral detector sensitivity based on the various input data options provided by manufacturer data and who performed the corresponding calculations.
OCIS codes: 070.4560, 070.6110, 200.3050
References:1. V. I. Fedoseev, “Noise parameters of photodetector arrays,” J. Opt. Technol. 79(6), 357–362 (2012) [Opt. Zh. 79(6), 59–66 (2012)].
2. GOST 25532-89, “Photosensitive Charge Transfer Devices: Terms and Definitions,” 1991.
3. V. I. Fedoseev, Detection of Spatial and Time Signals in Optoelectronic Systems (Universitetskaya Kniga, Moscow, 2011).
4. C. H. Séquin and M. F. Tompsett, Charge Transfer Devices (Academic, New York, 1975: Mir, Moscow, 1978).
5. G. C. Holst, CCD Arrays, Cameras and Displays (SPIE, Bellingham, Washington, 1998).
6. A. M. Filachev, I. I. Taubkin, and M. A. Treshnikov, Solid-State Photoelectronics (Fizmatkniga, Moscow, 2005).
7. G. A. Avanesov, V. V. Akimov, and S. V. Voronkov, “Test results for Russian and foreign CCD arrays with charged-particle sources,” in Proceedings of the All-Russian Science and Engineering Conference on Current Problems in Spacecraft Orientation and Navigation, Tarusa, Russia, 22–25 September 2008, pp. 447–457.
8. V. I. Fedoseev, V. V. Kunyaev, L. M. Yudina, A. A. Koptev, V. S. Tyurin, and N. I. Ivanov, “Test results for the effects of proton radiation on a spacecraft astroorientation sensor,” Proceedings of the 3rd All-Russian Science and Engineering Conference on Current Problems in Spacecraft Orientation and Navigation, Tarusa, Russia, 10–13 September 2012, pp. 190–198.
9. TC285SPD-30 1004 × 1002 PIXEL IMPACTRON CCD Image Sensor Datasheet, Texas Instruments, https://www.pco.de/fileadmin/user_upload/db/download/TC285SPD-30_DS.pdf.
10. CCD201-20 Back Illuminated 2-Phase IMO Series Electron Multiplying CCD Sensor Datasheet, e2V, http://www.e2V.com.
11. S. Lauxterman, A. Lee, J. Stevens, and A. Joshi, “Comparison of global shutter pixels CMOS image sensors,” in Proceedings of the International Image Sensors Workshop, Ogunquit, Maine, June 7–10, 2007, pp. 82–85.
12. Y. Bai, J. Bajaj, W. Beletic, M. C. Farris, A. Joshi, S. Lauxterman, A. Petersen, and G. Williams, “Teledyne imaging sensors: silicon CMOS imaging technologies for x-ray, UV, visible and near infrared,” Proc. SPIE 7021, 1–16 (2008).