УДК: 681.786.3
Optical systems of modern static spacecraft-orientation devices
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Колосов М.П., Гебгарт А.Я. Оптические системы современных статических приборов ориентации космических аппаратов // Оптический журнал. 2017. Т. 84. № 12. С. 3–10.
Kolosov M.P., Gebgart A.Ya. Optical systems of modern static spacecraft-orientation devices [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 12. P. 3–10.
M. P. Kolosov and A. Ya. Gebgart, "Optical systems of modern static spacecraft-orientation devices," Journal of Optical Technology. 84(12), 793-798 (2017). https://doi.org/10.1364/JOT.84.000793
This paper discusses the optical systems of modern static spacecraft-orientation devices (with respect to the stars, the earth, and the sun) based on radiation-detector arrays. The design features of the optical systems of these devices are exhibited, and some results of calculations for their objectives are presented.
optical system, radiation-detector array, objective, geometrical standard channel, hood
OCIS codes: 120.4570, 220.4830
References:1. V. I. Fedoseev and M. P. Kolosov, Optoelectronic Devices for Spacecraft Orientation and Navigation (Logos, Moscow, 2007).
2. Yu. G. Yakushenkov, V. N. Lukantsev, and M. P. Kolosov, Noise-Suppression Methods in Optoelectronic Devices (Radio i Svyaz’, Moscow, 1981).
3. S. A. Dyatlov and R. V. Bessonov, “Review of star sensors for spacecraft orientation,” in Collection of Abstracts of the All-Russia Scientific-and-Engineering Conference on Modern Problems of Determining Spacecraft Orientation and Navigation, 22–25 Sep. 2008, Russia, Tarusa (IKI RAN, Moscow, 2009), pp. 11–31.
4. A. Ya. Gebgart, “On some design features of the objectives of stellar devices for spacecraft orientation,” in Abstracts of Reports at the Ninth International OPTICS-EXPO Forum (2013), p. 27.
5. A. Ya. Gebgart and M. P. Kolosov, “Design features of the lens objectives of celestial-orientation apparatus for spacecraft,” J. Opt. Technol. 82(6), 357–360 (2015) [Opt. Zh. 82(6), 36–41 (2015)].
6. L. I. Avakyants, A. N. Ignatov, E. Yu. Krekhov, V. I. Molev, A. E. Pozdnyakov, S. N. Sizov, and V. F. Surkova, “Optical materials with special properties manufactured at the Lytkarino Optical Glass Factory,” J. Opt. Technol. 80(4), 204–206 (2013) [Opt. Zh. 80(4), 3–7 (2013)].
7. A. Yu. Karelin, “Enhancing the accuracy of wide-field astronomical measurement devices with CCD arrays,” J. Opt. Technol. 65(8), 640–644 (1998) [Opt. Zh. 65(8), 46–50 (1998)].
8. D. S. Volosov, Photographic Optics (Iskusstvo, Moscow, 1971).
9. S. I. Latyev, Compensating the Errors in Optical Devices (Mashinostroenie, Leningrad, 1985).
10. V. A. Panov, ed., Design Handbook of Optomechanical Devices (Mashinostroenie, Leningrad, 1980).
11. M. P. Kolosov, A. Ya. Gebgart, and A. Yu. Karelin, “On the role of the position of the pupils in the nonmisadjustable optical systems of goniometers with a geometrical-reference channel,” J. Opt. Technol. 79(2), 95–98 (2012) [Opt. Zh. 79(2), 48–53 (2012)].
12. M. P. Kolosov, The Optics of Adaptive Goniometers (SKAN-1, Moscow, 1997).
13. V. I. Varlamov, D. N. Gal’chinskiı˘, A. Ya. Gebgart, S. A. Demeshko, S. Yu. Zenzinov, M. P. Kolosov, V. A. Polkunov, N. M. Strizhova, and G. L. Tsymbal, “Device for measuring the angular coordinates of the sun,” Russian Federation Patent No. 155,683 (2015).
14. G. A. Avanesov, Ya. L. Ziman, V. A. Krasikov, N. I. Snetkova, V. G. Sobchuk, and A. A. Forsh, “Algorithms for determining the orientation of spacecraft from on-board star measurements,” Izv. Vyssh. Uchebn. Zaved. Prib. 46(4), 31–37 (2003).
15. V. I. Fedoseev, A. Yu. Karelin, and E. L. Korotkova, “Using stars to calibrate the goniometric optical devices of spacecraft,” J. Opt. Technol. 62(9) 586–590 (1995) [Opt. Zh. 62(9), 26–31 (1995)].
16. M. P. Kolosov, The Optics of Adaptive Goniometers: Introduction to Design (LOGOS, Moscow, 2011).
17. S. A. Sukhoparov, “Spatially invariant configurations for optical instruments,” Izv. Vyssh. Uchebn. Zaved. Prib. 25(11), 58–66 (1982).
18. A. Ya. Gebgart and M. P. Kolosov, “Optical systems of static goniometers with a nonmisadjustable monoblock geometrical standard channel,” in Materials of the Scientific and Applied Conference on Optics, Photonics, and Optical Information in Science and Engineering at the Fifth International OPTICS-EXPO Forum (2009).
19. A. Ya. Gebgart and M. P. Kolosov, “Nonmisadjustable optical systems of goniometers with a fixed line of sight,” J. Opt. Technol. 77(10), 628–632 (2010) [Opt. Zh. 77(10), 48–53 (2010)].
20. A. Ya. Gebgart and M. P. Kolosov, “Goniometric device,” Russian Federation Patent No. 2,470,258 (2011).
21. A. Ya. Gebgart and M. P. Kolosov, “Goniometric device,” Russian Federation Patent No. 2,525,652 (2013).
22. A. Ya. Gebgart, M. P. Kolosov, and M. E. Gusev, “Goniometric stellar device,” Russian Federation Patent No. 2,399,871 (2009).
23. M. P. Kolosov, “Introduction to the design of the optical systems of adaptive goniometers,” J. Opt. Technol. 77(10), 633–638 (2010) [Opt. Zh. 77(10), 54–60 (2010)].
24. M. P. Kolosov and A. Ya. Gebgart, “Goniometric stellar device,” Russian Federation Patent No. 2,442,109 (2010).
25. M. P. Kolosov, A. Ya. Gebgart, Yu. N. Zybin, and A. Yu. Karelin, “Goniometric device,” Russian Federation Patent No. 2,469,266 (2010).
26. M. P. Kolosov and Yu. V. Lysyuk, “Analysis of nonmisadjustable optical systems of goniometers with stationary lines of sight,” J. Opt. Technol. 65(8), 653–657 (1998) [Opt. Zh. 65(8), 61–65 (1998)].
27. M. G. Pirogov, Yu. A. Videtskikh, V. I. Fedoseev, V. I. Varlamov, S. Yu. Zenzinov, M. P. Kolosov, N. M. Strizhova, A. Ya. Gebgart, V. V. Denisov, and M. A. Terekhov, “Devices for orientation with respect to the earth, based on uncooled microbolometric detector arrays for spacecraft,” in Twentieth International Scientific–Engineering Conference on Photoelectronics and Next-Generation Devices. Abstracts of Reports (NPO Orion, Moscow, 2008), pp. 66–67.
28. V. V. Gordyakin, N. M. Strizhova, and N. A. Shatalova, “Device for orientation with respect to the earth based on a microbolometric array,” Russian Federation Patent No. 132,887 (2013).
29. A. Ya. Gebgart, “Design features of some types of ultrawide-angle objectives,” J. Opt. Technol. 77(9), 538–541 (2010) [Opt. Zh. 77(9), 17–21 (2010)].
30. A. Ya. Gebgart, A. Ya. Shatova, and V. V. Medvedev, “The optical systems of certain types of wide-angle IR objectives,” J. Opt. Technol. 80(2), 107–109 (2013) [Opt. Zh. 80(2), 48–51 (2013)].
31. V. V. Tarabukin, “Designing superwide-angle photographic systems,” Opt. Mekh. Prom. (3), 29–31 (1974).
32. Ya. M. Ivandikov, Optoelectronic Devices for Spacecraft Orientation and Navigation (Mashinostroenie, Moscow, 1971).
33. S. M. Marchuk, “Wide-angle projection objective for an information-display system,” J. Opt. Technol. 73(12), 846–848 (2006) [Opt. Zh. 73(12), 27–29 (2006)].