УДК: 535.41
Measurement of nanoscale roughness using white-light interferometry
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Лихачев И.Г., Пустовой В.И., Красовский В.И. Измерение наноразмерных неровностей с помощью интерферометрии белого света // Оптический журнал. 2017. Т. 84. № 12. С. 38–44.
Likhachev I.G., Pustovoy V.I., Krasovskiy V.I. Measurement of nanoscale roughness using white-light interferometry [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 12. P. 38–44.
I. G. Likhachev, V. I. Pustovoĭ, and V. I. Krasovskiĭ, "Measurement of nanoscale roughness using white-light interferometry," Journal of Optical Technology. 84(12), 822-827 (2017). https://doi.org/10.1364/JOT.84.000822
Based on the method of white-light interferometry, a technique for measuring a surface profile with an accuracy of 0.05 nm with a measurement time of 100 ms was developed. It is compared with similar methods described in the literature. The surface profile of a silicon wafer was measured after mechanical polishing. Comparison of the results obtained here with the results of measurements with the industrial system ZYGO-7100 showed promise of creating devices that operate on the proposed principle.
interferometry, superluminescent, fiber-optic, Fabry–Perot, profile
OCIS codes: 060.2370, 070.4340, 120.2230, 240.5770
References:1. S. A. Egorov, A. N. Mamaev, and I. G. Likhachiev, “High-reliable, self-calibrated signal processing method for interferometric fiber-optic sensors,” Proc. SPIE 2594, 193–197 (1995).
2. K. B. Dedushenko, S. A. Egorov, Yu. A. Yershov, and I. G. Likhachev, “Interferometric fiber-optic measuring system Dozor,” Pribory 7(25), 23–27 (2002).
3. I. G. Likhachev and V. I. Pustovoı˘, “Fiber-optical system for measuring pressure,” Datchiki Sist. 6, 56–60 (2011).
4. I. Likhachev and V. Pustovoy, “Fiber-optic sensing system for nanometer displacement measurements,” in 17th International Conference on Advanced Laser Technologies, Antalya, Turkey, Sept. 26–Oct. 1, 2009, p. 42.
5. I. G. Likhachev and V. I. Pustovoı˘, “Program for processing signals coming from a spectrometer operating as part of a fiber optic measuring system (Optopoisk),” Certificate of state registration of a computer program No. 2012618479, Sept. 19, 2012.
6. P. Sixt, L. Falco, P. Dierauer, and H. W. Lehmann, “Microstructure fiber-tip sensor with spectral encoding,” Proc. SPIE 1011, 213–225 (1998).
7. P. I. Nikitin, B. G. Gorshkov, M. V. Valeı˘ko, and S. I. Rogov, “Spectral-phase interference method for recording surface biochemical reactions,” Quantum Electron. 30(12), 1099–1104 (2000).
8. S. V. Miridonov, M. G. Shlyagin, A. V. Khomenko, and V. V. Spirin, “Digital demodulation algorithm for white-light fiber-optic interferometric sensors,” Proc. SPIE 4777, 136–142 (2002).
9. Z. Huang, W. Peng, J. Xu, G. R. Pickrell, and A. Wang, “Fiber temperature sensor for high-pressure environment,” Opt. Eng. 44(10), 104401 (2005).
10. Y. Bing, A. Wang, and G. R. Pickrell, “Analysis of fiber Fabry–Perot interferometric sensors using low-coherence light sources,” J. Lightwave Technol. 24(4), 1758–1767 (2006).
11. M. Jedrzejewska-Szczerska, “Shaping coherence function of sources used in low-coherent measurement techniques,” Euro. Phys. J. 144, 203–208 (2007).
12. M. Jedrzejewska-Szczerska, R. Bogdanowicz, M. Gnyba, R. Hypszer, and B. B. Kosmowski, “Fiber-optic temperature sensor using low-coherence interferometry,” Euro. Phys. J. 154, 107–111 (2008).
13. J. Plucinski, R. Hypszer, P. Wierzba, M. Strakowski, M. Jedrzejewska-Szczerska, M. Maciejewski, and B. B. Kosmowski, “Optical low-coherence interferometry for selected technical applications,” Bull. Pol. Acad. Sci. 56(2), 155–172 (2008).
14. Z. Yang, M. Zhang, Y. Liao, S. Lai, Q. Tian, Q. Li, Y. Zhang, and Z. Zhuang, “A modified crosscorrelation method for white-light optical fiber extrinsic Fabry–Perot interferometric hydrogen sensors,” Proc. SPIE 7508, 75081Q (2009).
15. L. M. Manojlovic, “A simple white-light fiber-optic interferometric sensing system for absolute position measurement,” Opt. Laser Eng. 48, 486–490 (2010).
16. X. Zhou and Q. Yu, “Wide-range displacement sensor based on fiber-optic Fabry–Perot interferometer for subnanometer measurement,” IEEE Sens. J. 11(7), 1602–1606 (2011).
17. L. M. Manojlovic and M. B. Zivanov, “Spectrally resolved white-light interferometric sensor for absolute position measurement based on Hilbert transform,” IEEE Sens. J. 12(6), 2199–2204 (2012).
18. P. Pavlicek and V. Michalek, “White-light interferometry-envelope detection by Hilbert transform and influence of noise,” Opt. Lasers Eng. 50, 1063–1068 (2012).
19. C. Ma and A. Wang, “Signal processing of white-light interferometric low-finesse fiber-optic Fabry–Perot sensors,” Appl. Opt. 52(2), 127–138 (2013).
20. http://www.inject-laser.ru/.
21. www.zygo.com.