УДК: 520.2.062, 520.2.03
Possibilities of laser-holographic monitoring of assembly and alignment of a segmented primary telescope mirror using the Millimetron space observatory as an example
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Лукин А.В., Мельников А.Н., Скочилов А.Ф., Пышнов В.Н. О возможностях лазерно-голографического контроля процессов сборки и юстировки составного главного зеркала телескопа на примере космической обсерватории «Миллиметрон» // Оптический журнал. 2017. Т. 84. № 12. С. 45–49.
Lukin A.V., Melnikov A.N., Skochilov A.F., Pyshnov V.N. Possibilities of laser-holographic monitoring of assembly and alignment of a segmented primary telescope mirror using the Millimetron space observatory as an example [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 12. P. 45–49.
A. V. Lukin, A. N. Mel’nikov, A. F. Skochilov, and V. N. Pyshnov, "Possibilities of laser-holographic monitoring of assembly and alignment of a segmented primary telescope mirror using the Millimetron space observatory as an example," Journal of Optical Technology. 84(12), 828-832 (2017). https://doi.org/10.1364/JOT.84.000828
The monitoring of the assembly and alignment (positioning) of the elements of segmented mirrors of telescopes is proposed using the axial synthesized holograms and coherent properties of laser radiation sources. By examining the segmented primary mirror of the Millimetron telescope, whose carbon-fiber-reinforced composite panels form four ring-shaped tiers, the possibility of detecting the deviations of each of the 24 identical panels of the same tier from the set positions and the sign and magnitude of the errors of the interposition of panels of the neighboring tiers near the places of their “dockings” are considered.
laser-holographic monitoring, infrared laser, reflective axial synthesized hologram, assembly, alignment, segmented primary mirror, carbon-fiber-reinforced composite panel, telescope, Millimetron
OCIS codes: 110.6770, 350.1260, 230.4040, 220.1250, 220.4610, 220.1140, 220.4840, 090.2880, 090.2890
References:1. http://millimetron.ru.
2. “The largest mirror-reflector in the world,” Fotonika 1(49), 111 (2015), http://www.photonics.su/journal/2015/1.
3. V. N. Pyshnov, “Creation of dimensionally stable panels from high modulus carbon fiber-reinforced cyanate-ester composites for the reflector of the space observatory Millimetron,” in Proceedings of the Scientific and Technical Conference Terrestrial and Space Based Optoelectronic Systems, Lytkarino, Russia, 2014, pp. 159–160.
4. N. P. Larionov, A. V. Lukin, and K. S. Mustafin, “Synthetic hologram as an optical compensator,” Opt. Spektrosk. 32(2), 396–399 (1972).
5. A. R. Agachev, N. P. Larionov, A. V. Lukin, T. A. Mironova, A. A. Nyushkin, D. V. Protasevich, and R. A. Rafikov, “Computer-generated holographic optics,” J. Opt. Technol. 69(12), 871–878 (2002) [Opt. Zh. 69(12), 23–32 (2007)].
6. A. V. Lukin, “Holographic optical elements,” J. Opt. Technol. 74(1), 65–70 (2007) [Opt. Zh. 74(1), 80–87 (2007)].
7. A. Belozerov, N. Larionov, A. Lukin, and A. Mel’nikov, “On-axis synthesized hologram optical elements: history of development and applications. Part I,” Fotonika 4(46), 12–32 (2014).
8. M. A. Okatov, ed., Handbook of the Optical Technologist (Politekhnika, St. Petersburg, 2004).
9. V. A. Baloev, V. P. Ivanov, N. P. Larionov, A. V. Lukin, A. N. Mel’nikov, A. F. Skochilov, A. M. Uraskin, and Yu. P. Chugunov, “A precise method of monitoring the alignment of two-mirror telescopes based on a system of synthesized annular holograms,” J. Opt. Technol. 79(3), 167–173 (2012) [Opt. Zh. 79(3), 56–64 (2012)].
10. A. V. Lukin, R. A. Rafikov, and I. A. Toporkova, “Calculation of tolerances and optimization of holographic monitoring systems for aspherical surfaces,” Opt.-Mekh. Prom-st. 7, 33–35 (1981).
11. A. V. Lukin, “The coherent properties of laser sources in interferometry and holography,” J. Opt. Technol. 79(3), 194–197 (2012) [Opt. Zh. 79(3), 91–96 (2012)].