УДК: 621.391.837.681.3]:[621, 681:723
Spectrofluorimeter for estimating the metabolic state of organs and tissues
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Папаян Г.В., Галагудза М.М., Минасян С.М., Кишалов А.А., Журба В.М. Спектрофлуориметр для оценки метаболического состояния органов и тканей // Оптический журнал. 2017. Т. 84. № 12. С. 62–71.
Papayan G.V., Galagudza M.M., Minasyan S.M., Kishalov A.A., Zhurba V.M. Spectrofluorimeter for estimating the metabolic state of organs and tissues [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 12. P. 62–71.
G. V. Papayan, M. M. Galagudza, S. M. Minasyan, A. A. Kishalov, and V. M. Zhurba, "Spectrofluorimeter for estimating the metabolic state of organs and tissues," Journal of Optical Technology. 84(12), 843-850 (2017). https://doi.org/10.1364/JOT.84.000843
A spectrofluorimeter has been developed that measures the intrinsic fluorescence intensity in the emission regions of respiratory coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) at wavelengths 465 and 515 nm with excitation at 365 nm and 440 nm. The redox ratio NADH/FAD is used as the main index of the metabolic state of a bio-object. This parameter, because of the different directionality of the NADH and FAD reactions in response to oxidation, possesses higher sensitivity to the change of state of biotissue and depends less on absorption and scattering variations. The diffuse reflectance at 440 nm serves as a supplementary parameter. All the parameters are normalized to normoxia conditions. The NADH-excitation effect is detected at wavelength 440 nm. Using a study of rat heart under ex vivo and in vivo conditions as an example, it is demonstrated that early damage of the myocardium accompanying regional ischemia can be detected.
fluorescence spectroscopy, fluorescence diagnostics, autofluorescence, ischemia, redox ratio, NADН, FAD
OCIS codes: 170.0170, 170.6280, 170.6510, 170.3880, 170.3880, 170.1610, 170.4580
References:1. A. Mayevsky, Mitochondrial Function In Vivo Evaluated by NADH Fluorescence (Springer, Switzerland, 2015).
2. M. M. Lukina, M. V. Shirmanova, T. F. Sergeeva, and E. V. Zaganova, “Metabolic imaging in the study of oncologic processes,” Sovrem. Tekhnol. Med. 8(4), 113–126 (2016).
3. B. Chance, B. Schoener, R. Oshino, F. Itshak, and Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals,” J. Biol. Chem. 254(11), 4764–4771 (1979).
4. M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
5. M. Skala and N. Ramanujam, “Multiphoton redox ratio imaging for metabolic monitoring in vivo,” Methods Mol. Biol. 594, 155–162 (2010).
6. I. Georgakoudi and K. P. Quinn, “Optical imaging using endogenous contrast to assess metabolic state,” Ann. Rev. Biomed. Eng. 14, 351–367 (2012).
7. H. N. Xu, R. Zhou, L. Moon, M. Feng, and L. Z. Li, “3D imaging of the mitochondrial redox state of rat hearts under normal and fasting conditions,” J. Innov. Opt. Health. Sci. 7(2), 1350045 (2014).
8. W. C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, “In vivo brain tumor demarcation using optical spectroscopy,” Photochem. Photobiol. 73(4), 396–402 (2001).
9. Q. Liu, G. Grant, J. Li, Y. Zhang, F. Hu, S. Li, C. Wilson, K. Chen, D. Bigner, and T. Vo-Dinh, “Compact point-detection fluorescence spectroscopy system for quantifying intrinsic fluorescence redox ratio in brain cancer diagnostics,” J. Biomed. Opt. 16(3), 037004 (2011).
10. J. An, A. K. S. Camara, S. S. Rhodes, M. L. Riess, and D. F. Stowe, “Warm ischemic preconditioning improves mitochondrial redox balance during and after mild hypothermic ischemia in guinea pig isolated hearts,” Am. J. Physiol. Heart Circul. Physiol. 288, H2620–H2627 (2005).
11. M. Ranji, M. M. Motlagh, F. Salehpour, R. Sepehr, J. S. Heisner, R. K. Dash, and A. K. S. Camara, “Optical cryoimaging reveals a heterogeneous distribution of mitochondrial redox state in ex vivo guinea pig hearts and its alteration during ischemia and reperfusion,” IEEE J. Transl. Eng. Health. Med. 4, 1800210 (2016).
12. V. V. Dremin, E. A. Zherebtsov, V. V. Sidorov, A. I. Krupatkin, I. N. Makovik, A. I. Zherebtsova, E. V. Zharkikh, E. V. Potapova, A. V. Dunaev, A. A. Doronin, A. V. Bykov, I. E. Rafailov, K. S. Litvinova, S. G. Sokolovski, and E. U. Rafailov, “Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus,” J. Biomed. Opt. 22(8), 085003 (2017).
13. A. Mayevsky, Y. Blum, N. Dekel, A. Deutsch, R. Halfon, S. Kremer, E. Pewzner, E. Sherman, and O. Barnea, “The CritiView: a new fiber optic based optical device for the assessment of tissue vitality,” Proc. SPIE 6083, 60830Z (2006).
14. M. Balu, A. Mazhar, C. K. Hayakawa, R. Mittal, T. B. Krasieva, K. Konig, V. Venugopalan, and B. J. Tromberg, “In vivo multiphoton NADH fluorescence reveals depth-dependent keratinocyte metabolism in human skin,” Biophys. J. 104(1), 258–267 (2013).
15. S. R. Kantelhardt, D. Kalasauskas, K. König, E. Kim, M. Weinigel, A. Uchugonova, and A. Giese, “In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue,” J. Neurooncol. 127(3), 473–482 (2016).
16. http://www.jenlab.de/.
17. U. Kang, G. V. Papayan, B. B. Berezin, S.-J. Bae, S. V. Kim, and N. N. Petrishchev, “Multispectral fluorescence organoscopes for in vivostudies of laboratory animals and their organs,” J. Opt. Technol. 78(9), 623–628 (2011) [Opt. Zh. 78(9), 82–90 (2011)].
18. M. É. Kolpakova, G. M. Nutfullina, G. V. Papayan, and N. N. Petrishchev, “The variation of the autofluorescence pattern of the kidney when there is short-term ischemia in rats,” Regionar. Krovoobrashch. Mikrotsirk. (1), 53–56 (2009).
19. T. D. Vlasov, O. V. Kornyushin, and G. V. Papayan, “Possibilities of autofluorescence organoscopy when there is ischemia and reperfusion damage of the small intestine in vitro,” Regionar. Krovoobrashch. Mikrotsirk. (2), 73–75 (2009).
20. M. M. Galagudza, T. D. Vlasov, G. V. Papayan, A. V. Belozertseva, and I. S. Uskov, “Visualization of the initial manifestations of ischemic damage of the heart by means of autofluorescence spectroscopy,” Regionar. Krovoobrashch. Mikrotsirk. (2), 76–77 (2009).
21. V. B. Loschenov, V. I. Konov, and A. M. Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10(6), 1188–1207 (2000).
22. K. A. Horvath, K. T. Schomacker, C. C. Lee, and L. H. Cohn, “Intraoperative myocardial ischemia detection with laser induced fluorescence,” J. Thorac. Cardiovass. Surg. 107, 220–225 (1994).
23. A. Y. Popov, V. V. Salmin, A. A. Fursov, A. V. Stepanenko, A. G. Sokolovich, A. B. Salmina, A. A. Rebenkova, R. A. Makarov, and A. S. Provorov, “Automated laser spectrofluorimeter for monitoring of myocardial metabolism,” Proc. SPIE 6284, 62840J (2006).
24. U. Kang, G. V. Papayan, B. B. Berezin, N. N. Petrishchev, and M. M. Galagudza, “Spectrometer for fluorescence–reflection biomedical research,” J. Opt. Technol. 80(1), 40–48 (2013) [Opt. Zh. 80(1), 56–67 (2013)].
25. G. V. Papayan, A. M. Esayan, I. G. Kayukov, N. N. Petrishchev, and M. A. Yampol’ski, “Measuring advanced glycation endproducts in skin with chronic kidney disease by the autofluorescence method,” Klinich. Nefrol. (6), 17–22 (2014).
26. R. V. Golubev, G. V. Papayan, N. Yu. Korosteleva, A. A. Glazunova, N. N. Petrishchev, and A. V. Smirnov, “Study of dermal autofluorescence in order to determine the concentration of advanced glycation endproducts in patients undergoing chronic hemodialysis,” Terapevtich. Arkhiv 88(6), 65–72 (2016).
27. N. N. Petrischev, G. V. Papayan, E. N. Grineva, E. A. Trofimova, and U. Kang, “Evaluation of the fluorescent properties of the skin in the patients with diabetes mellitus of different age,” Photodiagn. Photodyn. Therapy 7, S15 (2010).
28. G. V. Papayan, N. N. Petrishchev, and M. M. Galagudza, “Method of estimating the functional state of the human organism by measuring the autofluorescence properties of skin,” Russian Federation Patent No. 2,547,790 (2015).
29. G. V. Papayan, V. M. Zhurba, A. A. Kishalov, and M. M. Galagudza, “Fiber fluorescence–reflection spectrometer with multiwave excitation,” J. Opt. Technol. 81(1), 29–32 (2014) [Opt. Zh. 81(1), 38–43 (2014)].
30. G. V. Papayan, V. M. Zhurba, A. A. Kishalov, and M. M. Galagudza, “Optical-fiber spectrometer system for carrying out intraoperation studies,” J. Opt. Technol. 81(6), 334–337 (2014) [Opt. Zh. 81(6), 43–47 (2014)].
31. G. V. Papayan, M. M. Galagudza, V. M. Zhurba, and A. A. Kishalov, “Device for fluorescence spectroscopy of biological tissue,” Russian Federation Patent No. 2,539,817 (2014).
32. G. V. Papayan, N. N. Petrischev, and M. M. Galagudza, “Autofluorescence spectroscopy for NADH and flavoproteins redox state monitoring in the isolated rat heart subjected to ischemiareperfusion,” Photodiagn. Photodyn. Ther. 11(3), 400–408 (2014).
33. D. Chorvat, J. Kirchnerova, M. Cagalinec, J. Smolka, A. Mateasik, and A. Chorvatova, “Spectral unmixing of flavin autofluorescence components in cardiac myocytes,” Biophys. J.: Biophys. Lett. 89(6), L55–L57 (2005).
34. S. M. Minasyan, M. M. Galagudza, D. L. Sonin, D. A. Zverev, D. V. Korolev, Yu. V. Dmitriev, M. S. Vasil’eva, Yu. N. Grigorova, and T. D. Vlasov, “Perfusion technique for the isolated rat heart,” Regionar. Krovoobrashch. Mikrotsirk. 8(4(32)), 54–59 (2009).