ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

All optical NOR gate based on cross structures in 2D photonic crystal using logic NOT and OR gate

For Russian citation (Opticheskii Zhurnal):

Deeksha Rani, Rajinder Singh Kaler, Balveer Painam All optical NOR gate based on cross structures in 2D photonic crystal using logic NOT and OR gate (Полностью оптические вентили ИЛИ-НЕ на основе пересекающихся структур в двумерных фотонных кристаллах, использующие логические вентили НЕ и ИЛИ) [на англ. яз.] // Оптический журнал. 2017. Т. 84. № 12. С. 72–79.

 

Deeksha Rani, Rajinder Singh Kaler, Balveer Painam All optical NOR gate based on cross structures in 2D photonic crystal using logic NOT and OR gate (Полностью оптические вентили ИЛИ-НЕ на основе пересекающихся структур в двумерных фотонных кристаллах, использующие логические вентили НЕ и ИЛИ) [in English] // Opticheskii Zhurnal. 2017. V. 84. № 12. P. 72–79.

For citation (Journal of Optical Technology):

Deeksha Rani, Rajinder Singh Kaler, and Balveer Painam, "All-optical NOR gate based on cross structures in 2D photonic crystal using logic NOT and OR gates," Journal of Optical Technology. 84(12), 851-857 (2017). https://doi.org/10.1364/JOT.84.000851

Abstract:

An optical NOR gate is presented based on two different cross waveguide structures in 2D photonic crystal. The two different cross waveguide structures are logic NOT and OR gate. The layout of logic NOT and OR gate are simulated and analysed individually using Finite Difference Time Domain method. The structure is optimized by iterative process. The contrast ratio for logic NOT gate is 11.605 dB and for OR gate is 22.113 dB. The size of NOT and OR structures are 10×10 μm. With the optimized parameters, both the gates are combined without using any external device to design the NOR gate. The operation of NOR gate is numerically demonstrated using FDTD simulation. The contrast ratio is 15.97 dB for NOR gate. Since non linear material is not used, the power consumption is less. This NOR structure has an operating bandwidth of 40 nm. Thus, it is favorable for use in optical communication system and optical signal processor.

Keywords:

photonic crystals, photonic crystal waveguides, photonic bandgap matials, optical logic devices

OCIS codes: 160.5298; 130.5296; 160.5293; 250.3750

References:

1. Mehra R., Jaiswal S., Dixit H.K.R. Optical computing with semiconductor optical amplifiers // Optical Engineering. 2012. V. 51. № 8. P. 080901-1–080901-7.
2. Sugimoto Y., Ikeda N., Ozaki N., Watanabe Y., Ohkouchi S., Kuroda T., Sakoda K. Advanced quantum dot and photonic crystal technologies for integrated nanophotonic circuits // Microelectronics Journal. 2009. V. 40. № 5. P. 736–740.
3. Roy J.N., Maiti A.K., Samanta D., Mukhopadhyay S. Tree-net architecture for integrated all optical arithmetic operations and data comparison scheme with optical nonlinear material // Optical Switch Network. 2007. V. 4. № 29. P. 231–237.
4. Abdeldayem H., Frazier D.O. Optical computing: Need and challenge // Communications of the ACM. 2007. V. 50. № 9. P. 60–62.
5. BaoJ., Xiao J., Fan L., Li X., Hai Y., Zhang T., Yang C. All-optical NOR and NAND gates based on photonic crystal ring resonator // Optical Communication. 2014. V. 329. № 15. P. 109–112.
6. Wu Y.D., Shih T.T., Chen M.H. New all-optical logic gates based on the local nonlinear Mach–Zehnder interferometer // Optics Express. 2008. V. 16. № 1. P. 248–257.

7. Choi K.S., Byun Y.T., Lee S., Jhon Y.M. All-optical OR/NOR Bi-functional logic gate by using cross-gain modulation in semiconductor optical amplifiers // Journal of the Korean Physical Society. 2010. V. 56. № 4. P. 1093–1096.
8. Menezes J.W.M., De Fraga W.B., Ferreira A.C., Saboia K.D.A., Guimarães G.F., Sousa J.R.R., Sombra A.S.B. Logic gates based in two- and three-modes nonlinear optical fiber couplers // Optical and Quantum Electronics. 2007. V. 39. № 14. P. 1191–1206.
9. Cuesta-Soto F., Martinez A., Garcia J., Ramos F., Sanchis P., Blasco J., Marti J. All-optical switching structure based on a photonic crystal directional coupler // Optics Express. 2004. V. 12. № 1. P. 161–167.
10. Armenise M.N., Campanella C.E., Ciminelli C., Dell’Olio F. Passaro V.M. Phononic and photonic bandgap structures: modelling and applications // Physics Procedia. 2010. V. 3. № 1. P. 357–364.
11. Sedghi A.A., Kalafi M., Soltani Vala A., Rezaei B. The influence of shape and orientation of scatterers on the photonic bandgap in 2D metallic photonic crystals // Optics Communications. 2010. V. 283. № 11. P. 2356–2362.
12. Leung K.M., Liu Y.F. Photon band structures: The plane-wave method // Physical Review B. 1990. V. 41. № 14. P. 10188–10190.
13. Andalib P., Granpayeh N. All-optical ultra-compact photonic crystal AND gate based on nonlinear ring resonators // Journal Optical Society of America. B. 2009. V. 26. № 1. P. 10–16.
14. Zhang Y.L., Zhang Y., Li B.J. Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals // Optical Express. 2010. V. 15. № 15. P. 9287–9292.
15. Kim H.S., Lee T.K., Oh G.Y., Kim D.G., Choi Y.W. Analysis of all optical logic gate based on photonic crystals multimode interference // Proceedings of SPIE. 2010. V. 7606. № 5. P. 76061F–76061F.
16. Wu C.J., Liu C.P., Ouyang Z. Compact and low-power optical logic NOT gate based on photonic crystal waveguides without optical amplifiers and nonlinear materials // Applied Optics. 2012. V. 51. № 5. P. 680–685.
17. Bai J., Wang J., Jiang J., Chen X., Li H., Qiu Y., Qiang Z. Photonic Not and Nor gates based on a single compact photonic crystal ring resonator // Applied Optics. 2009. V. 48. № 36. P. 6923–6927.
18. Tang C., Dou X., Lin Y., Yin H., Wu B., Zhao Q. Design of all-optical logic gates avoiding external phase shifters in a two-dimensional photonic crystal based on multi-modeinterference for BPSK signals // Optics Communications. 2014. V. 316. № 8. P. 49–55.
19. Chu S.T., Chaudhuri S.K. A finite-difference time-domain method for the design and analysis of guided-wave optical structures // Journal of Lightwave Technology. 1989. V. 7. № 12. P. 2033–2038.
20. Taflove A., Hagness S.C. Computational electrodynamics: the finite-difference time-domain method. Second edition. Chapter 4. Boston: Arthech House Publisher, 2000. P. 163–177.