ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 54.03, 535-15

Crystals and light guides for the mid-infrared spectral range

For Russian citation (Opticheskii Zhurnal):

Корсаков А.С., Жукова Л.В., Львов А.Е., Салимгареев Д.Д., Корсаков М.С. Кристаллы и световоды для среднего инфракрасного диапазона спектра // Оптический журнал. 2017. Т. 84. № 12. С. 80–86.

 

Korsakov A.S., Zhukova L.V., Lvov A.E., Salimgareev D.D., Korsakov M.S. Crystals and light guides for the mid-infrared spectral range [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 12. P. 80–86.

For citation (Journal of Optical Technology):

A. S. Korsakov, L. V. Zhukova, A. E. L’vov, D. D. Salimgareev, and M. S. Korsakov, "Crystals and light guides for the mid-infrared spectral range," Journal of Optical Technology. 84(12), 858-863 (2017). https://doi.org/10.1364/JOT.84.000858

Abstract:

The physicochemical properties of crystals of AgClxBr1−x solid solutions and new AgBrxI1−x, Ag1−xTlxBr1−xIx, and Ag1−xTlxBr1−0.54xI0.54x crystals grown by the Bridgman method using equipment created at the Ural Federal University are studied herein. The crystal compositions are determined from the region of existence of solutions stable at room temperature using the state diagrams of the AgCl–AgBr, AgBr–AgI, AgBr–TlI, and AgBr–(TlBr0.46I0.54) systems studied here. The refractive indices are determined by Michelson interferometry and by a spectroscopic method using an infrared (IR) Fourier spectrometer in the wavelength range from 0.632 to 14.0 μm. Accordingly, the transmission spectra of the crystals and light guides in the range from 0.19 to 41.6 μm are measured, and their mechanical properties are studied. The photon structure of IR light guides is simulated.

Keywords:

IR crystals, photonic-crystal light guides, transmission spectra, structure simulation, refractive indices

Acknowledgements:

The research was supported by the Ministry of Education and Science of the Russian Federation (Minobrnauka) (4.9514.2017/8).

OCIS codes: 260.1180, 060.2290, 060.2310

References:

1. E. M. Voronkova, B. N. Grechushnikov, and G. I. Disler, Optical Materials for Infrared Technology (Nauka, Moscow, 1965).
2. V. V. Groznetskiı˘, V. D. Zhuravlev, G. A. Kitaev, and L. V. Zhukova, “Refinement of the state diagrams of the AgCl–AgBr system,” Zh. Neorg. Khim. 30, 1033–1035 (1985).
3. V. V. Groznetskiı˘, V. D. Zhuravlev, G. A. Kitaev, and L. V. Zhukova, “Thermoanalytical study of AgCl–AgI and AgBr–AgI systems,” Zh. Neorg. Khim. 33(3), 711–713 (1988).
4. A. S. Korsakov, L. V. Zhukova, E. A. Korsakova, V. V. Zhukov, and V. S. Korsakov, “Thermodynamic study of crystals of the AgBr–TlI system and the fabrication of IR light guides with a nanocrystalline structure based on them,” Tsvetn. Met. 4, 62–66 (2013).
5. A. S. Korsakov, L. V. Zhukova, V. S. Korsakov, D. S. Vrublevskiı˘, and D. D. Salimgareev, “Investigation of phase equilibria and modeling of the structure of the system AgBr–TlBr 0.46 I 0.54,” Tsvetn. Met. 8, 50–54 (2014).
6. L. V. Zhukova, N. V. Primerov, A. S. Korsakov, and A. I. Chazov, “AgCl xBr 1−x and AgCl x BryI 1−x−y crystals and light guides for IR technology,” Neorg. Mater. 44(12), 1372–1377 (2008).
7. V. S. Shiryaev, J. L. Adam, X. H. Zhang, C. Boussard-Pledel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Crystalline Solids 336, 113–119 (2004).

8. D. Bunimovich and A. Katzir, “Dielectric properties of silver halide and potassium halide crystals,” Appl. Opt. 32, 2045–2048 (1993).
9. L. V. Zhukova, A. S. Korsakov, A. I. Chazov, D. S. Vrublevsky, and V. V. Zhukov, “Photonic crystalline IR fibers for the spectral range of 2.0–40.0 μm,” Appl. Opt. 51(13), 2414–2418 (2012).
10. L. V. Zhukova, A. I. Chazov, A. S. Korsakov, and V. V. Zhukov, “Single-mode two-layer crystalline infrared lightguide,” Russian patent 2413257 (2011).
11. A. Millo, L. Lobachinsky, and A. Katzir, “Single-mode octagonal photonic crystal fibers for the middle infrared,” Appl. Phys. Lett. 92, 021112 (2008).
12. L. V. Zhukova, A. S. Korsakov, and D. D. Salimgareev, Infrared Crystals: Theory and Practice (UMTs UPI Publishing, Ekaterinburg, 2015).
13. A. S. Korsakov, D. S. Vrublevsky, V. S. Korsakov, and L. V. Zhukova, “Investigating the optical properties of polycrystalline AgCl 1−xBr x (0 ≤ x ≤ 1) and Ag 0.95 Br 0.95Tl 0.05 I 0.05 for IR engineering,” Appl. Opt. 54, 8004–8009 (2015).
14. J. R. Rogers and M. D. Hopler, “Conversion of group refractive index to phase refractive index,” J. Opt. Soc. Am. A 5, 1595–1600 (1988).
15. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon Press, Oxford, 1964).
16. D. F. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics,” Proc. SPIE 4987, 69–82 (2003).
17. D. Felbacq, G. Tayeb, and D. Maystre, “Scattering by a random set of parallel cylinders,” J. Opt. Soc. Am. A 11, 2526–2538 (1994).
18. K. Okamoto, Fundamentals of Optical Waveguides (Academic, San Diego, 2000).
19. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
20. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
21. A. Hochman and Y. Leviatan, “Analysis of strictly bound modes in photonic fibers by use of a source-model technique,” J. Opt. Soc. Am. A 21(6), 1073–1081 (2004).
22. V. G. Artiushenko, “Polycrystalline light guides for the middle IR range,” Trudy IOFAN 15, 3–17 (1988).
23. L. V. Zhukova, A. S. Korsakov, and D. S. Vrublevskiı˘, New Infrared Materials: Crystals and Light Guides (Ural University Publishing, Ekaterinburg, 2014).
24. GOST 24452-80, “Concrete: methods for determining the prismatic strength, elastic modulus, and Poisson’s ratio.”